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ABSTRACT 1 
Transit agencies could benefit from forecasting methods that are cheaper, quicker, and easier than 2 
the most commonly used methods, and time series methods are one potential alternative not widely 3 
used in practice. In this study, time series analysis was used to produce univariate, system-wide, 4 
monthly transit ridership forecasts for all heavy rail agencies in the continental United States. 5 
Using an automated moving window approach, nearly 3,000 models were generated to examine 6 
the changing forecasting performance over time of seven different methods: ARIMA, ETS, STL-7 
ARIMA, STL-ETS, TBATS, a neural network, and an ensemble method. Three time periods were 8 
used to generate forecasts, which were the full series (2002 to 2023), pre-COVID period (pre 9 
March 2020), and post-COVID period (post March 2020). The MAPE and MASE were used to 10 
measure forecast accuracy. Using each method, the majority of the pre-COVID forecasts had 11 
acceptable performance. By comparison, the models underperformed using the full series and post-12 
COVID periods. The ensemble and ARIMA methods tended to outperform the other methods for 13 
each time period. The neural network substantially underperformed for the pre-COVID and full 14 
series periods, but slightly outperformed the other methods for the post-COVID period. Based on 15 
these findings, time series forecasting is an efficient method to forecast ridership with stable 16 
seasonality, periodicity, and trends, which was typical of pre-pandemic ridership. However, the 17 
results suggest that for data exhibiting less stable ridership patterns, univariate time series 18 
forecasting of transit ridership is more challenging. 19 
 20 
Keywords: public transit ridership, time series forecasting, heavy rail, COVID-19  21 



Hightower and Brakewood  

3 
 

INTRODUCTION 1 
Even prior to the COVID-19 pandemic, overall transit ridership in the US was in decline (see  2 
Figure 1). The COVID-19 pandemic caused substantial ridership decreases due to reduced service, 3 
stay-at-home orders, and fears of infection, among other reasons. More than three years after the 4 
onset of the COVID-19 pandemic, ridership at nearly all US agencies in medium/large metro areas 5 
has still not recovered (1), likely due to factors such as the increased popularity of telework, 6 
changes in travel patterns (2), and service disruptions (3). At the same time, other types of travel 7 
in the US such as air travel and interstate travel have recovered (4; 5). Moreover, the COVID-19 8 
pandemic has introduced more uncertainty to transit ridership forecasting by disturbing previously 9 
well-established features of ridership patterns, such as the presence of strong seasonality and daily 10 
peaks typical of commuter ridership (2).  11 

Transit agencies can benefit from considering alternative methods of ridership forecasting. 12 
The most widely-used methods of ridership forecasting in practice tend to be the four-step and 13 
activity-based travel demand models, which are time consuming to set up, require extensive 14 
calibration, and are not suited to sub-regional forecasting (6-8). While more simple methods of 15 
ridership forecasting exist and are capable of achieving a finer resolution, for example, linear 16 
regression models (6), time series models are particularly easy to set up due to their ability to 17 
produce univariate forecasts; in other words, transit agencies only need to know their previous 18 
ridership in order to begin forecasting. Given that most agencies already report their ridership 19 
levels to the Federal Transit Administration, they likely already have the data they need to produce 20 
time series forecasts. By using free, open-source software packages to automatically optimize the 21 
parameters of a time series model, agencies could quickly, frequently, and cheaply produce 22 
reasonably accurate forecasts for regular planning and budgeting activities. 23 

In this study, monthly ridership for the 14 heavy rail agencies in the continental United 24 
States (US) was forecasted using seven different time series methods: ARIMA, ETS, STL-25 
ARIMA, STL-ETS, TBATS, a neural network, and an ensemble method. Three time series periods 26 
were used. In the first time period, a baseline was established for pre-COVID forecast 27 
performance. In the second time period, the models were trained through the onset of the pandemic 28 
to examine the usefulness of pre-COVID data in post-COVID forecasts. In the third time period, 29 
the models were trained only on post-COVID data in order to test the ability of the models to 30 
identify trends and patterns in post-COVID ridership. A moving window was used to see the 31 
changing performance of the forecasts over time, which can provide insight into the factors that 32 
influence the accuracy of univariate ridership forecasts. By comparing forecasts for all US heavy 33 
rail agencies, any universal and reoccurring characteristics of the data that negatively impacted 34 
forecasting performance could be exposed. Additionally, by testing multiple forecasting periods, 35 
the effect of the length of the training data and a disruptive outside factor (COVID) was evaluated. 36 
This study can help inform transit agencies who seek to explore more dynamic and less 37 
computationally intensive methods to accurately forecast ridership. 38 

This paper proceeds as follows. First, a literature review is presented that briefly explains 39 
traditional methods of forecasting transit ridership and recent studies that have forecasted ridership 40 
using time series methods. The forecasting software, periods of analysis, time series methods, and 41 
performance measures are then explained. Next, the results of the forecasts are presented; about 42 
3,000 time series models were generated, which demonstrate their changing performance over time 43 
and due to the pandemic. Conclusions and areas for future research are discussed last. 44 
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Figure 1 National Transit Ridership in the US by Mode (January 2002 to December 2023) 3 
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LITERATURE REVIEW  1 
The four-step and activity-based travel demand models are common methods of estimating 2 
ridership demand in practice (9-18), as are direct ridership models using regression-based 3 
techniques (6). However, the four-step and activity-based models have some drawbacks; for 4 
example, they have extensive calibration requirements which can be time-consuming to complete 5 
(7; 8), are best suited for the regional scale (6), and their assumptions may not hold for post-6 
COVID conditions (7). Direct ridership models provide high-resolution ridership forecasts, but 7 
they require multiple variables, may require fine-tuning regarding which variables to include, and 8 
are often best-suited to produce order-of-magnitude estimates of ridership (6).  9 

Many prior studies of transit ridership forecasting have explored the performance and 10 
applicability of a variety of other methods, for example, time series multiple regression (19), 11 
ordinary least squares regression (20), and mode choice models (21). One recent study compiled 12 
data from 164 transit projects in the US in order to evaluate the overall accuracy of transit 13 
forecasting. Heavy rail ridership forecasts were found to be highly optimistic, perhaps due to the 14 
scope of their service and the potential for high variability in demand (22).  15 

Although there exist many good forecasting methods, time series methods are especially 16 
user friendly, cost effective, and time efficient. In particular, univariate time series models can be 17 
used to quickly generate ridership forecasts at any level of resolution and are easily adaptable to 18 
new conditions, unlike other models which depend on assumptions or base parameters informed 19 
by experimental evidence (e.g., ridership elasticities).  20 

There exist several relevant studies of time series methods to forecast transit ridership in 21 
dynamic conditions (23-29). In the two most relevant studies, the effect of a disruptive event (the 22 
COVID-19 pandemic) on forecasting performance was evaluated using a number of statistical and 23 
machine learning methods (30; 31). In the first of the two most relevant prior studies (which is 24 
also by the authors of this paper), the same seven time series methods used in this study were used 25 
to forecast pre- and post-COVID heavy rail ridership to evaluate the general suitability of time 26 
series forecasting for transit demand. Ridership forecasting was found to be straightforward pre-27 
COVID, but the performance of the forecasts were negatively impacted by the onset of the 28 
pandemic at most agencies. Using a longer dataset for post-COVID forecasts, the classical and 29 
ensemble methods outperformed the other models, but using a short dataset, the more complex 30 
TBATS, neural network, and ensemble methods outperformed (30). Similarly, another relevant 31 
study compared real-time forecasting performance for bus ridership in Bogota, Columbia using 32 
five different ARIMA and deep learning models. The models once again were found to all perform 33 
well in stable conditions but performed substantially worse in dynamic conditions. The LSTM 34 
model with adaptive training was found to adapt the quickest to dynamic conditions (31). 35 

This brief review shows that transit ridership forecasting is an important and challenging 36 
task, especially when conditions are unstable. The most common forecasting methods in practice 37 
tend to be demanding, time-consuming, and are often limited in their scope and by the context of 38 
the study area. Time series models require only one variable, previous ridership, in order to be 39 
estimated, but can also incorporate covariates associated with transit ridership, e.g., gas prices, 40 
change in population, fare changes, and income levels. This study builds upon prior research by 41 
investigating the long-term effects of COVID-19 on the predictability of heavy rail ridership 42 
through a moving window technique. By estimating nearly 3,000 forecasts for 14 agencies, this 43 
study sheds light on what universal factors, if any, impact the performance of ridership forecasts 44 
and helps to inform transit planners about strategies to forecast ridership in dynamic conditions.   45 
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DATA AND METHODS 1 
This section discusses the data, period of analysis, software, models and performance measures 2 
used to conduct this analysis.  3 
 4 
Data  5 
Monthly ridership data in terms of unlinked passenger trips (UPT) were downloaded from the 6 
National Transit Database (32). The fourteen agencies used in this study are shown in Table 1, 7 
alongside background information regarding each agency’s service area population and size, 8 
annual UPT, and percent recovery in ridership from December 2019 to December 2023.  9 
 10 
Period of Analysis  11 
Three time periods were used for analysis. The first time period was the pre-COVID period, which 12 
included all NTD heavy rail ridership data prior to March 2020. This time period was isolated in 13 
order to establish a baseline performance of the time series methods under stable conditions. The 14 
second time period was the full data series from January 2002 to December 2023, which was the 15 
latest available data point at the time of analysis. The third time period was the post-COVID period, 16 
which included all data after March 2020. These periods of analysis are consistent with a prior 17 
study on time series ridership forecasting written by the authors of this paper (30). 18 

 19 
Software 20 
Staff at Minneapolis Metro Transit published an online tool to produce univariate time series 21 
forecasts of monthly transit ridership (33). Their tool is an open source, R-based Shiny app (34; 22 
35). In order to conduct a time series analysis using the same methods a transit agency may use, 23 
the same forecasting methods used by Minneapolis Metro Transit were selected for this study. The 24 
functions used in this study were written by the authors using R Version 4.3.1, and the code is 25 
publicly available at https://github.com/ashley2876/forecasting_repo.  26 
 27 
Time Series Models 28 
Shown in Figure 2, seven methods used in this study are: ARIMA, ETS, STL-ARIMA, STL-ETS, 29 
TBATS, a feed-forward autoregressive neural network with a single hidden layer (NNET), and an 30 
ensemble model with equal weights of the ARIMA, NNET, STL-ARIMA, and TBATS methods 31 
(Hybrid ANST). These seven methods were chosen because they are already used to forecast 32 
ridership by at least one US transit agency, Minneapolis Metro Transit. Other time series methods 33 
were not included because of their computational complexity, obscurity, and/or because they were 34 
not suitable for the data’s length or pattern. A brief overview of the advantages and disadvantages 35 
of each method is provided in Table 2. For more details, readers are referred to (30; 36; 37).  36 
 37 
Performance Measures 38 
The performance measures used in this paper were the mean absolute percent error (MAPE) and 39 
the mean absolute scaled error (MASE) of the testing data. These performance measures were 40 
selected because they are suitable to compare forecasts of datasets that have different scales. Based 41 
off popular convention and practice, forecasts with a MAPE less than 5% were considered to have 42 
“good” performance, and forecasts with a MAPE less than 10% were considered to have 43 
“acceptable” performance. A MASE less than one indicated that the forecast performed better than 44 
the seasonal naïve forecast, i.e., compared to simply setting all forecasted values to be equal to the 45 
last observed value from the same season, the forecast produced a more accurate result (36).  46 
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Table 1 Summary Statistics of Heavy Rail Agencies in the Continental US  1 
Agency Name UZA Name Service Area 

Square Miles 
Service Area 
Population 

Unlinked Passenger 
Trips FY 2022 

Recovery in Ridership 
Dec ‘19 to Dec ‘23 

Chicago Transit Authority Chicago, IL--IN 310 3,207,635 103,524,858 55.1% 

County of Miami-Dade  Miami--Fort Lauderdale, FL 306 2,701,767 11,446,854  82.1% 

Los Angeles County MTA  Los Angeles--Long Beach--
Anaheim, CA 4,099 10,394,849 25,075,130  50.7% 

Maryland Transit Administration Baltimore, MD 2,560 7,811,145 2,252,070  50.6% 

Massachusetts Bay Transportation 
Authority Boston, MA--NH 3,244 3,109,308 78,861,897  55.4% 

Metropolitan Atlanta Rapid Transit 
Authority Atlanta, GA 949 2,128,687 26,079,792  54.4% 

MTA New York City Transit New York--Jersey City--Newark, 
NY--NJ 321 8,804,190 1,788,363,060  73.3% 

Port Authority Trans-Hudson 
Corporation 

New York--Jersey City--Newark, 
NY--NJ 226 3,134,256 46,589,043  64.4% 

Port Authority Transit Corporation Philadelphia, PA--NJ--DE--MD 16 159,726 4,870,310  50.4% 

San Francisco Bay Area Rapid 
Transit District San Francisco--Oakland, CA 80 867,725 36,774,619  42.1% 

Southeastern Pennsylvania 
Transportation Authority Philadelphia, PA--NJ--DE--MD 844 3,475,337 52,499,263  52.0% 

Staten Island Rapid Transit 
Operating Authority 

New York--Jersey City--Newark, 
NY--NJ 59 495,747 3,757,728  68.2% 

The Greater Cleveland Regional 
Transit Authority Cleveland, OH 458 1,412,140 2,808,149  66.4% 

Washington Metropolitan Area 
Transit Authority 

Washington--Arlington, DC--VA--
MD 1,349 5,089,918 76,077,714  60.8% 

Source: National Transit Database Complete Monthly Ridership, December 2023 (32) 

 2 
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  1 
 2 
Figure 2 Seven Forecasting Methods   3 

Time Series Methods Used

Classical

ARIMA ETS STL-ARIMA STL-ETS TBATS

Machine 
Learning

Feed-forward 
autoregressive 
neural network 
with a single 
hidden layer

Ensemble

ARIMA, neural 
network, STL-
ARIMA, and 
TBATS
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Table 2 Advantages and Disadvantages of Each Forecasting Method 1 

Method Advantages Disadvantages Reference 

ARIMA 

• Very robust, potentially infinite models 
• Relatively computationally simple 
• Very well-established and well-defined in literature and 

practice 

• Assumes linear data (36; 38-
41) 

ETS 

• Adjustable parameter can place higher/lower weights on 
more recent observations 

• Suitable for data with no clear trend or pattern 
• Computationally simple 

• Not robust, effectively has only nine models 
to choose from (36; 42) 

STL 
• Allows the seasonal component to change over time 
• Robust to outliers 
• Can handle nonlinearity 

• Does not automatically handle calendar 
variation (36; 43) 

TBATS 
• Good for complex seasonality 
• Allows seasonality to change slowly over time 
• Can handle nonlinearity 

• Long computation time (36; 37) 

Neural 
Network • Good for complex nonlinear relationships 

• Computationally complex 
• Longer computation time 
• Tendency to overfit 

(44-46) 

Ensemble 
• Minimizes the errors from each method 
• Has been shown in literature to outperform pure statistical 

and pure machine learning methods 

• Computationally complex 
• Longest computation time (46; 47) 

2 
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RESULTS AND DISCUSSION 1 
In order to determine if there exist consistent and reoccurring characteristics of ridership 2 
data that tend to negatively impact univariate ridership forecasts, moving windows were 3 
used to estimate a consecutive series of forecasts with 12-month-long horizons. The MAPE 4 
and MASE were calculated for each forecast in order to record the changing performance 5 
over time of the seven time series methods used in this study. A total of 2,940 forecasts 6 
were estimated. The results of the pre-COVID forecasts are shown first in order to establish 7 
a baseline of performance for the time series forecasting methods. Next, the results of the 8 
full series forecasts are shown, followed by the post-COVID forecasts. Last, a summary of 9 
the overall performance of each method for each time period is given. 10 
 11 
Results of the Pre-COVID Analysis 12 
For the pre-COVID period, 12 sets of forecasts were estimated in order to establish a 13 
baseline performance considering the effect of a full year of seasonal changes in transit 14 
ridership. The forecasting windows were selected by setting the last window to use the last 15 
12 months of observations prior to the COVID-19 pandemic; therefore, the last set of 16 
models used testing data from March 2019 to February 2020, and the first set of models 17 
used testing data from April 2018 to March 2019 (see  18 
Figure 3).  19 
 20 

 21 
 22 
Figure 3 Moving Window for a Consecutive Series of 12-Month, Pre-COVID Forecasts 23 
 24 
 Each forecast estimated ridership for the following 12 months, and the estimates 25 
were compared to actual ridership in order to evaluate the forecasting performance using 26 
the MAPE and MASE (also referred to as “errors”). In this study, a forecast with a MAPE 27 
below 5% was considered to have “good” performance, and a forecast with a MAPE below 28 
10% was considered to have “acceptable” performance. A MASE less than 1.00 means the 29 
forecast outperformed the simple naïve method. In Figure 4, the errors for each forecasting 30 
method at the Chicago Transit Authority were plotted alongside the time series of ridership. 31 
In  Figure 5, the errors for the Greater Cleveland Regional Transit Authority were similarly 32 
plotted; these two agencies were selected as examples of the results found at each of the 14 33 
agencies in this study. The change in errors is shown on the y-axis of the upper plots, and 34 
the x-axis represents which testing/forecasting window was used, using the first month of 35 
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the testing data as the identifier. The bottom plot shows the time series of monthly ridership 1 
in unlinked passenger trips; although the models were trained on data beginning in January 2 
2002, only the time series from January 2010 to the onset of the pandemic were included, 3 
so that the pre-COVID trend and seasonal patterns are clearly visible.  4 
 Figure 4 shows that for pre-COVID ridership at the Chicago Transit Authority, all 5 
but one model produced good forecasts. The ETS and ARIMA methods tended to 6 
outperform the other methods. The neural network consistently underperformed compared 7 
to the rest of the methods and struggled to produce forecasts that outperformed the naïve 8 
method. All models struggled to outperform the naïve method for the forecasting windows 9 
starting in November and December. Examining the ridership plot revealed a larger-than-10 
previous fluctuation in ridership from late 2018 to early 2019, which likely contributed to 11 
the decrease in forecasting performance for those windows. However, thanks to Chicago’s 12 
obvious strong seasonal patterns, the time series methods generally performed well. 13 
 Figure 5 shows that for pre-COVID ridership at the Greater Cleveland Regional 14 
Transit Authority, the time series methods tended to produce acceptable results until the 15 
testing window moved to begin in September 2018. The models’ performance appeared to 16 
improve over the course of the first three testing windows, with the ETS and TBATS 17 
methods even producing good forecasts with a MAPE less than 5%. However, beginning 18 
with the fourth testing window, the performance steadily decreased. Examining the 19 
ridership plot revealed discontinuities in relative seasonality in the data, especially in 2019. 20 
Also in 2019, ridership decreases were steeper than in previous years, likely due to a 21 
closure on the heavy rail line for maintenance over the summer of 2019 (48). Overall, there 22 
appeared to be fewer and weaker seasonal patterns in Cleveland compared to Chicago, 23 
which may have made forecasting more challenging in that region. 24 
 Figures for the other heavy rail agencies were not included for the sake of brevity. 25 
At many agencies, there was a decrease in forecasting performance that emerged with the 26 
testing window beginning in mid to late 2018. Often, the forecasts then improved, creating 27 
a concave shape on the plots. For the agencies whose forecasts improved, the changes in 28 
MAPE could be an arbitrary byproduct of measuring performance using an averaged 29 
percent error, i.e., the MAPE could be sensitive to unexpectedly high/low seasonal 30 
peaks/lulls in ridership, especially when the ridership has been overestimated, producing 31 
negative percent errors (36). But for agencies with steadily worsening forecast 32 
performance, in many cases, the decline in forecast performance could be related to the 33 
trend in the data in 2019, i.e., larger changes in ridership compared to previous years. 34 
Nevertheless, the majority of the models produced good or acceptable forecasts for all 35 
agencies and all testing windows. Generally, about 90% of the models for each forecasting 36 
method had an acceptable MAPE, and about 60% of the models had a good MAPE; the 37 
one exception was the neural network, for which method only 43% of the models produced 38 
a good MAPE. Despite the overall acceptable results, there were some agencies for which 39 
ridership was consistently more difficult to forecast (Cleveland and Baltimore). This may 40 
be due to the limited heavy rail service in those two cities, which each have only one heavy 41 
rail line. No one method stood out as having particularly better performance compared to 42 
all the rest for pre-COVID heavy rail ridership, although at individual agencies, some 43 
methods did outperform the others.  44 
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 1 
Figure 4 Pre-COVID Change in Errors at the Chicago Transit Authority   2 
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 1 
Figure 5 Pre-COVID Change in Errors at the Greater Cleveland Regional Transit Authority  2 
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Results of the Full Series Analysis 1 
Nine sets of forecasts were estimated for post-COVID ridership using the full data series 2 
(January 2002 to December 2023). The STL methods require at least 25 observations in 3 
order to produce forecasts. Therefore, the post-COVID series’ forecasts needed to train on 4 
the data at least from April 2020 to April 2022. In order to compare between the forecasts 5 
from the full series and post-COVID series, both periods’ first testing/forecasting window 6 
began with May 2022, allowing for nine sets of forecasts to be estimated (see Figure 6). 7 
 8 

 9 
Figure 6 Moving Window for a Consecutive Series of 12-Month Post-COVID Forecasts Using the 10 
Full Series and Post-COVID Time Periods 11 
 12 
 Each of the 882 models produced for the full series period were used to forecast 13 
ridership for the following 12 months, and the errors were recorded. The errors for the 14 
Chicago Transit Authority and the Greater Cleveland Regional Transit Authority are shown 15 
in Figure 7 and Figure 8, respectively; in the plots, only post-COVID ridership is shown 16 
in order to view the trends and patterns more clearly.  17 
 Figure 7 shows that for the full series period, most of the models for the Chicago 18 
Transit Authority produced acceptable forecasts, with the exception of the neural network 19 
models. Most of the models also outperformed the naïve method, with the exception of a 20 
few of the neural network models. No one method stood out as having particularly better 21 
performance than all the other methods, although the ETS and TBATS methods produced 22 
good forecasts earlier in the post-COVID period and the ensemble (hybrid) method 23 
produced good forecasts later in the post-COVID period. The time series plot of ridership 24 
shows clear seasonal patterns and a steady, positive trend, which likely contributed to the 25 
ability of the time series methods to produce acceptable forecasts.  26 
 Figure 8 shows that, for the Greater Cleveland Regional Transit Authority, few of 27 
the models produced acceptable results; however, all of the models outperformed the naïve 28 
method. No one method stood out as having better performance than all the rest, but the 29 
neural network method underperformed. The time series plot of ridership shows a generally 30 
positive trend but lacks clear seasonal patterns.  31 
 Overall for the 14 agencies, the ARIMA and ensemble methods outperformed the 32 
other methods for post-COVID ridership forecasting using the full data series. Roughly 50-33 
55% of the models for all methods produced acceptable forecasts, but for the ARIMA 34 
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 1 
Figure 7 Full Series Change in Errors at the Chicago Transit Authority   2 
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 1 
Figure 8 Full Series Change in Errors at the Greater Cleveland Regional Transit Authority  2 
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method, 64% of the models produced acceptable forecasts. Roughly 5-10% of the models 1 
for all methods produced good forecasts, but roughly 25% of the models using the ARIMA 2 
or ensemble methods produced good forecasts. The neural network underperformed, with 3 
less than 25% of the neural network models producing an acceptable forecast. The neural 4 
network also struggled to outperform the naïve method. 5 
 6 
Results of the Post-COVID Analysis 7 
Similar to the previous section, nine sets of forecasts were estimated for post-COVID 8 
ridership, but now using only post-COVID data (May 2020 to December 2023). As 9 
described previously, because of the short time span between the onset of the pandemic 10 
and the time of this analysis, there were only 45 monthly observations for the post-COVID 11 
period, 25 of which were required to train the models. Therefore, only nine sets of forecasts 12 
could be estimated. The errors for the Chicago Transit Authority and the Greater Cleveland 13 
Regional Transit Authority are once again shown in Figure 9 and Figure 10, respectively; 14 
the upper plots are the change in error according to which testing/forecasting window was 15 
used, and the bottom plot is the ridership in unlinked passenger trips.  16 
 Figure 9 shows that most of the models for the Chicago Transit Authority produced 17 
acceptable forecasts when the training data included observations at least through July 18 
2022. However, for the rest of the models, the forecasts did not produce acceptable 19 
MAPEs. The ETS and STL-ETS methods were the exception; opposite to the rest of the 20 
methods, the ETS method produced acceptable forecasts when the training data did not 21 
include observations beyond July 2022. The STL-ETS method never produced an 22 
acceptable forecast. Notably, the neural network method outperformed the rest of the 23 
methods, with all but one forecast producing acceptable MAPEs. All models outperformed 24 
the naïve method, likely due to Chicago’s clear seasonal patterns and steady, positive trend. 25 

Figure 10 shows that, for the Greater Cleveland Regional Transit Authority, almost 26 
none of the models produced acceptable results, nor did many of them outperform the naïve 27 
method. Interestingly, about half of the models with forecasts starting on November 2022 28 
produced an acceptable MAPE and outperformed the naïve method; all but the neural 29 
network improved when moving the testing/forecast window from October to November 30 
2022. This result contrasted with the full series forecast for the same forecasting windows; 31 
in Figure 8, the ETS, STL, and TBATS models worsened or stayed the same, while the 32 
ARIMA, neural network, and ensemble models improved. Also, none of the full series 33 
models for this testing window produced acceptable forecasts, whereas four of the post-34 
COVID models produced acceptable forecasts. Nevertheless, no method stood out as 35 
having the best performance for Cleveland. As discussed previously, this may be partially 36 
due to the data’s positive trend but only vague seasonal patterns.  37 

Overall for the 14 agencies, the forecasts for post-COVID ridership using only post-38 
COVID data underperformed compared to the same forecasts using the full data series. 39 
Most methods generally produced acceptable forecasts for around 45-50% of the models; 40 
the exceptions were the ETS and STL-ARIMA methods, which only produced acceptable 41 
forecasts for about 29% and 35% of the models, respectively. The neural network produced 42 
good forecasts for about 15% of the models, and the ensemble and STL-ETS methods 43 
produced good forecasts for about 13% and 11% of the models, respectively. The ETS and 44 
STL-ARIMA methods only produced good forecasts for just over 1% of the models.  45 
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 1 
Figure 9 Post-COVID Change in Errors at the Chicago Transit Authority   2 
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 1 
Figure 10 Post-COVID Change in Errors at the Greater Cleveland Regional Transit Authority 2 
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Overall Results 1 
In summary, the time series methods used in this study produced good or acceptable 2 
forecasts for most heavy rail agencies before the onset of the COVID-19 pandemic. After 3 
COVID, ridership forecasting for heavy rail agencies was more challenging. In all cases, 4 
the good and acceptable forecasts tended to be concentrated at specific agencies, suggesting 5 
that the performance of time series forecasts may be dependent on the characteristics of the 6 
transit agency and its ridership. For example, for all forecasting periods, the forecasts for 7 
the agencies in Cleveland and Baltimore tended to be poor. In contrast, forecasting was 8 
more straightforward at some agencies such as those in Chicago, Miami, and Los Angeles. 9 
The characteristics that influenced forecasting performance appeared to be the stability of 10 
the trend and seasonal periods, which in turn were likely affected by factors like service 11 
disruptions, the scope of the service area, and disruptive events like the COVID-19 12 
pandemic. 13 
 Table 3 summarizes the percent of good and acceptable forecasts by method and 14 
time period. The forecasts performed better when the training series was longer; however, 15 
the performance of the forecasts appeared to be sensitive to either the last training or testing 16 
observation (i.e., misleading training observations or greater changes in ridership month-17 
over-month). For example, many of the forecasts in the full series period had a decrease in 18 
performance when the testing/forecasting window began with the observation from 19 
October or November 2022. In most cases, there did not appear to be one common factor 20 
among all transit agencies that caused better or worse performance than other months; 21 
rather, the changing performance appeared to be random. However, one explanation for 22 
the changing performance at individual agencies could be competing trends in the time 23 
series data, e.g., seasonal fluctuations in ridership being masked by smaller increases in 24 
ridership recovery in late 2022. Additionally, the neural network method underperformed 25 
for the pre-COVID and full series time periods, but slightly outperformed the other 26 
methods for the post-COVID time period. One potential reason for the neural network’s 27 
mixed performance could be that its “P” parameter for the number of seasonal lags was set 28 
to one (as opposed to 12) in order to avoid extreme overfitting when forecasting only with 29 
post-COVID data. In the post-COVID data, there may have been a loss of seasonal patterns 30 
at many agencies, so using only one seasonal lag could have given the neural network 31 
models an advantage, assuming the previous month’s ridership became a better predictor 32 
of future ridership than that of the previous year (30).  33 
 Table 3 also shows that the ARIMA and ensemble (hybrid) methods exhibited 34 
relatively strong performance for the full series time period. Moreover, the ensemble 35 
method performed relatively well for all time periods. The good performance of the 36 
ensemble method may imply that no one forecasting method was able to adequately capture 37 
all patterns in the time series data, but by combining the methods, perhaps the errors of the 38 
individual models could be canceled out (46).   39 
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Table 3 Percent of Models that were Good (MAPE < 5%) or Acceptable (MAPE < 10%) by Method 1 
and Time Period 2 
 3 

Time 
Period Performance ARIMA ETS STL-

ARIMA 
STL-
ETS TBATS NNET Hybrid 

(ANST) 

Pre-
COVID 

MAPE <10% 91.1 89.9 91.1 90.5 89.9 87.5 92.9 

MAPE < 5% 56.5 63.1 67.3 67.3 58.9 42.9 67.3 

Full 
Series 

MAPE < 10% 64.3 54 52.4 52.4 52.4 24.6 49.2 

MAPE < 5% 24.6 9.5 4 4.8 10.3 6.3 25.4 

Post-
COVID 

MAPE < 10% 44.4 28.6 35.7 46 47.6 51.6 50 

MAPE < 5% 7.9 2.4 1.6 11.1 7.9 15.1 12.7 

 4 
 These findings are consistent with previous studies of time series forecasting 5 
performance, both for transit ridership as well as other applications. Some pre-COVID 6 
studies that compared the performance of time series forecasting methods for transit 7 
ridership likewise found that combined methods of ridership forecasting, like the ensemble 8 
method, tended to outperform the other methods (28; 29). Through the Makridakis 9 
Competitions, a series of open forecasting competitions, the performance of time series 10 
methods has been empirically evaluated and compared using over 100,000 diverse datasets 11 
and every major time series method available (46; 49). These competitions have 12 
consistently found that machine learning methods generally do not outperform simpler 13 
methods (46; 50). One of the reasons behind the underperformance of pure machine 14 
learning methods may be their tendency to overfit the data. Additionally, pure statistical 15 
and machine learning methods were found to both underperform compared to hybrid 16 
methods, especially those that combine statistical and machine learning methods (46). 17 
Another relevant finding was that the performance of the forecasts depended on the length 18 
of the forecasting horizon (50).  19 
 20 
CONCLUSIONS AND FUTURE RESEARCH 21 
This study compared the performance of seven time series methods for univariate ridership 22 
forecasting at the 14 heavy rail agencies in the continental US. Three forecasting time 23 
periods were examined: pre-COVID (prior to March 2020), full series (January 2002 to 24 
December 2023), and post-COVID data (after March 2020). Nearly 3,000 forecasts were 25 
estimated in order to understand the changing performance of time series forecasting 26 
methods for transit ridership over time. The analysis revealed four major findings.  27 
 First, in the pre-COVID era, forecasting transit ridership using univariate time 28 
series methods was relatively straightforward; 90% of the models produced good or 29 
acceptable pre-COVID forecasts.  30 
 Second, the performance of the time series methods decreased in the post-COVID 31 
era, although the models that trained off the full data series (i.e., pre- and post-COVID 32 
data) overall produced slightly better forecasts compared to the models that trained only 33 
off post-COVID data.  34 
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 Third, each individual method had changing performance according to which time 1 
period was used for model training. In the pre-COVID period, no one method outperformed 2 
all the rest, but the neural network slightly underperformed. Using the full series, the 3 
ARIMA and ensemble (hybrid) methods outperformed the rest of the models, and the 4 
neural network notably underperformed. However, using only post-COVID data to train 5 
the models, the neural network and ensemble methods outperformed all the other methods. 6 
The neural network may have outperformed the other methods when trained only on the 7 
post-COVID data because it was set to use only one seasonal lag. This implies that, in the 8 
post-COVID era, at some agencies, the previous month’s ridership may be a better 9 
indicator of future ridership compared to the previous year’s ridership. The ensemble 10 
method consistently performed relatively well for all time periods, perhaps due to its ability 11 
to minimize the effect of the errors from any one forecasting method  12 
 Fourth, there were differences in overall performance of time series forecasting 13 
methods by agency. At some agencies, the time series forecasting methods used in this 14 
study tended to produce acceptable results regardless of which time period was used to 15 
train the models. In contrast, at other agencies with more limited heavy rail service, for 16 
every combination of method or time period almost none of the models produced an 17 
acceptable forecast, and many of the forecasts did not even outperform the simpler naïve 18 
method.  19 
 In summary, this study demonstrates the general applicability of time series 20 
forecasting for heavy rail ridership. Univariate time series forecasts like the ones utilized 21 
in this paper are likely to be most suitable for agencies whose ridership data exhibit stable 22 
seasonality, periodicity, and trends. Agencies who are interested in making time- and cost-23 
efficient forecasts need only to understand their own ridership data in order to forecast with 24 
a univariate method. By using either Minneapolis Metro Transit’s forecasting tool or the 25 
publicly available code written for this paper, transit planners and practitioners could 26 
immediately begin generating their own time series forecasts to inform decision making 27 
regarding annual budgets, service levels, staffing needs, and other similar tasks. 28 
 Several areas for future research have emerged from this study. Future research 29 
should focus on forecasting ridership at smaller agencies, such as those in Baltimore and 30 
Cleveland. Additional methods of forecasting should be considered, and the performance 31 
of time series forecasts should be compared to that of the most common methods, such as 32 
the four-step, activity-based, and regression-based models. Last, time series forecasting 33 
should be tested for other transit modes, such as bus, light rail, or commuter rail.  34 
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