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ABSTRACT

Transit agencies could benefit from forecasting methods that are cheaper, quicker, and easier than
the most commonly used methods, and time series methods are one potential alternative not widely
used in practice. In this study, time series analysis was used to produce univariate, system-wide,
monthly transit ridership forecasts for all heavy rail agencies in the continental United States.
Using an automated moving window approach, nearly 3,000 models were generated to examine
the changing forecasting performance over time of seven different methods: ARIMA, ETS, STL-
ARIMA, STL-ETS, TBATS, a neural network, and an ensemble method. Three time periods were
used to generate forecasts, which were the full series (2002 to 2023), pre-COVID period (pre
March 2020), and post-COVID period (post March 2020). The MAPE and MASE were used to
measure forecast accuracy. Using each method, the majority of the pre-COVID forecasts had
acceptable performance. By comparison, the models underperformed using the full series and post-
COVID periods. The ensemble and ARIMA methods tended to outperform the other methods for
each time period. The neural network substantially underperformed for the pre-COVID and full
series periods, but slightly outperformed the other methods for the post-COVID period. Based on
these findings, time series forecasting is an efficient method to forecast ridership with stable
seasonality, periodicity, and trends, which was typical of pre-pandemic ridership. However, the
results suggest that for data exhibiting less stable ridership patterns, univariate time series
forecasting of transit ridership is more challenging.

Keywords: public transit ridership, time series forecasting, heavy rail, COVID-19
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INTRODUCTION

Even prior to the COVID-19 pandemic, overall transit ridership in the US was in decline (see
Figure 1). The COVID-19 pandemic caused substantial ridership decreases due to reduced service,
stay-at-home orders, and fears of infection, among other reasons. More than three years after the
onset of the COVID-19 pandemic, ridership at nearly all US agencies in medium/large metro areas
has still not recovered (7), likely due to factors such as the increased popularity of telework,
changes in travel patterns (2), and service disruptions (3). At the same time, other types of travel
in the US such as air travel and interstate travel have recovered (4, 5). Moreover, the COVID-19
pandemic has introduced more uncertainty to transit ridership forecasting by disturbing previously
well-established features of ridership patterns, such as the presence of strong seasonality and daily
peaks typical of commuter ridership (2).

Transit agencies can benefit from considering alternative methods of ridership forecasting.
The most widely-used methods of ridership forecasting in practice tend to be the four-step and
activity-based travel demand models, which are time consuming to set up, require extensive
calibration, and are not suited to sub-regional forecasting (6-8). While more simple methods of
ridership forecasting exist and are capable of achieving a finer resolution, for example, linear
regression models (6), time series models are particularly easy to set up due to their ability to
produce univariate forecasts; in other words, transit agencies only need to know their previous
ridership in order to begin forecasting. Given that most agencies already report their ridership
levels to the Federal Transit Administration, they likely already have the data they need to produce
time series forecasts. By using free, open-source software packages to automatically optimize the
parameters of a time series model, agencies could quickly, frequently, and cheaply produce
reasonably accurate forecasts for regular planning and budgeting activities.

In this study, monthly ridership for the 14 heavy rail agencies in the continental United
States (US) was forecasted using seven different time series methods: ARIMA, ETS, STL-
ARIMA, STL-ETS, TBATS, a neural network, and an ensemble method. Three time series periods
were used. In the first time period, a baseline was established for pre-COVID forecast
performance. In the second time period, the models were trained through the onset of the pandemic
to examine the usefulness of pre-COVID data in post-COVID forecasts. In the third time period,
the models were trained only on post-COVID data in order to test the ability of the models to
identify trends and patterns in post-COVID ridership. A moving window was used to see the
changing performance of the forecasts over time, which can provide insight into the factors that
influence the accuracy of univariate ridership forecasts. By comparing forecasts for all US heavy
rail agencies, any universal and reoccurring characteristics of the data that negatively impacted
forecasting performance could be exposed. Additionally, by testing multiple forecasting periods,
the effect of the length of the training data and a disruptive outside factor (COVID) was evaluated.
This study can help inform transit agencies who seek to explore more dynamic and less
computationally intensive methods to accurately forecast ridership.

This paper proceeds as follows. First, a literature review is presented that briefly explains
traditional methods of forecasting transit ridership and recent studies that have forecasted ridership
using time series methods. The forecasting software, periods of analysis, time series methods, and
performance measures are then explained. Next, the results of the forecasts are presented; about
3,000 time series models were generated, which demonstrate their changing performance over time
and due to the pandemic. Conclusions and areas for future research are discussed last.
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LITERATURE REVIEW

The four-step and activity-based travel demand models are common methods of estimating
ridership demand in practice (9-18), as are direct ridership models using regression-based
techniques (6). However, the four-step and activity-based models have some drawbacks; for
example, they have extensive calibration requirements which can be time-consuming to complete
(7; 8), are best suited for the regional scale (6), and their assumptions may not hold for post-
COVID conditions (7). Direct ridership models provide high-resolution ridership forecasts, but
they require multiple variables, may require fine-tuning regarding which variables to include, and
are often best-suited to produce order-of-magnitude estimates of ridership (6).

Many prior studies of transit ridership forecasting have explored the performance and
applicability of a variety of other methods, for example, time series multiple regression (79),
ordinary least squares regression (20), and mode choice models (21). One recent study compiled
data from 164 transit projects in the US in order to evaluate the overall accuracy of transit
forecasting. Heavy rail ridership forecasts were found to be highly optimistic, perhaps due to the
scope of their service and the potential for high variability in demand (22).

Although there exist many good forecasting methods, time series methods are especially
user friendly, cost effective, and time efficient. In particular, univariate time series models can be
used to quickly generate ridership forecasts at any level of resolution and are easily adaptable to
new conditions, unlike other models which depend on assumptions or base parameters informed
by experimental evidence (e.g., ridership elasticities).

There exist several relevant studies of time series methods to forecast transit ridership in
dynamic conditions (23-29). In the two most relevant studies, the effect of a disruptive event (the
COVID-19 pandemic) on forecasting performance was evaluated using a number of statistical and
machine learning methods (30; 31). In the first of the two most relevant prior studies (which is
also by the authors of this paper), the same seven time series methods used in this study were used
to forecast pre- and post-COVID heavy rail ridership to evaluate the general suitability of time
series forecasting for transit demand. Ridership forecasting was found to be straightforward pre-
COVID, but the performance of the forecasts were negatively impacted by the onset of the
pandemic at most agencies. Using a longer dataset for post-COVID forecasts, the classical and
ensemble methods outperformed the other models, but using a short dataset, the more complex
TBATS, neural network, and ensemble methods outperformed (30). Similarly, another relevant
study compared real-time forecasting performance for bus ridership in Bogota, Columbia using
five different ARIMA and deep learning models. The models once again were found to all perform
well in stable conditions but performed substantially worse in dynamic conditions. The LSTM
model with adaptive training was found to adapt the quickest to dynamic conditions (31).

This brief review shows that transit ridership forecasting is an important and challenging
task, especially when conditions are unstable. The most common forecasting methods in practice
tend to be demanding, time-consuming, and are often limited in their scope and by the context of
the study area. Time series models require only one variable, previous ridership, in order to be
estimated, but can also incorporate covariates associated with transit ridership, e.g., gas prices,
change in population, fare changes, and income levels. This study builds upon prior research by
investigating the long-term effects of COVID-19 on the predictability of heavy rail ridership
through a moving window technique. By estimating nearly 3,000 forecasts for 14 agencies, this
study sheds light on what universal factors, if any, impact the performance of ridership forecasts
and helps to inform transit planners about strategies to forecast ridership in dynamic conditions.
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DATA AND METHODS
This section discusses the data, period of analysis, software, models and performance measures
used to conduct this analysis.

Data

Monthly ridership data in terms of unlinked passenger trips (UPT) were downloaded from the
National Transit Database (32). The fourteen agencies used in this study are shown in Table 1,
alongside background information regarding each agency’s service area population and size,
annual UPT, and percent recovery in ridership from December 2019 to December 2023.

Period of Analysis

Three time periods were used for analysis. The first time period was the pre-COVID period, which
included all NTD heavy rail ridership data prior to March 2020. This time period was isolated in
order to establish a baseline performance of the time series methods under stable conditions. The
second time period was the full data series from January 2002 to December 2023, which was the
latest available data point at the time of analysis. The third time period was the post-COVID period,
which included all data after March 2020. These periods of analysis are consistent with a prior
study on time series ridership forecasting written by the authors of this paper (30).

Software

Staff at Minneapolis Metro Transit published an online tool to produce univariate time series
forecasts of monthly transit ridership (33). Their tool is an open source, R-based Shiny app (34,
35). In order to conduct a time series analysis using the same methods a transit agency may use,
the same forecasting methods used by Minneapolis Metro Transit were selected for this study. The
functions used in this study were written by the authors using R Version 4.3.1, and the code is
publicly available at https://github.com/ashley2876/forecasting_repo.

Time Series Models

Shown in Figure 2, seven methods used in this study are: ARIMA, ETS, STL-ARIMA, STL-ETS,
TBATS, a feed-forward autoregressive neural network with a single hidden layer (NNET), and an
ensemble model with equal weights of the ARIMA, NNET, STL-ARIMA, and TBATS methods
(Hybrid ANST). These seven methods were chosen because they are already used to forecast
ridership by at least one US transit agency, Minneapolis Metro Transit. Other time series methods
were not included because of their computational complexity, obscurity, and/or because they were
not suitable for the data’s length or pattern. A brief overview of the advantages and disadvantages
of each method is provided in Table 2. For more details, readers are referred to (30, 36, 37).

Performance Measures

The performance measures used in this paper were the mean absolute percent error (MAPE) and
the mean absolute scaled error (MASE) of the testing data. These performance measures were
selected because they are suitable to compare forecasts of datasets that have different scales. Based
off popular convention and practice, forecasts with a MAPE less than 5% were considered to have
“good” performance, and forecasts with a MAPE less than 10% were considered to have
“acceptable” performance. A MASE less than one indicated that the forecast performed better than
the seasonal naive forecast, i.e., compared to simply setting all forecasted values to be equal to the
last observed value from the same season, the forecast produced a more accurate result (36).
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Table 1 Summary Statistics of Heavy Rail Agencies in the Continental US

Agency Name

UZA Name

Service Area

Service Area

Unlinked Passenger

Recovery in Ridership

Square Miles | Population Trips FY 2022 Dec ‘19 to Dec ‘23

Chicago Transit Authority Chicago, IL--IN 310 3,207,635 103,524,858 55.1%
County of Miami-Dade Miami--Fort Lauderdale, FL 306 2,701,767 11,446,854 82.1%
Los Angeles County MTA Los Angeles--Long Beach-- 4,099 10,394,849 | 25,075,130 50.7%

Anaheim, CA
Maryland Transit Administration Baltimore, MD 2,560 7,811,145 2,252,070 50.6%
Massachusetts Bay Transportation | g0 A NH 3244 3,109308 | 78,861,897 55.4%
Authority
Metropolitan Atlanta Rapid Transit | .0 GA 949 2,128,687 | 26,079,792 54.4%
Authority
MTA New York City Transit o Yorle-Jersey City-Newarlo | 39 8,804,190 | 1,788,363,060 73.3%
Port Authorlty Trans-Hudson New York--Jersey City--Newark, 226 3,134,256 46,589,043 64.4%
Corporation NY--NJ
Port Authority Transit Corporation | Philadelphia, PA--NJ--DE--MD 16 159,726 4,870,310 50.4%
San Francisco Bay AreaRapid | ) prncisco--Oakland, CA 80 867,725 36,774,619 42.1%
Transit District
Southeastern Pennsylvania Philadelphia, PA~-NJ--DE-MD | 844 3475337 | 52,499,263 52.0%
Transportation Authority
Staten Island Rapid Transit New York--Jersey City--Newark, o
Operating Authority NY--NJ 59 495,747 3,757,728 68.2%
The Greater Cleveland Regional | ¢y 1404, o 458 1412,140 | 2,808,149 66.4%
Transit Authority
Washmgton M.etropohtan Area Washington--Arlington, DC--VA-- 1,349 5,089,918 76.077.714 60.8%
Transit Authority MD

Source: National Transit Database Complete Monthly Ridership, December 2023 (32)
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1 Table 2 Advantages and Disadvantages of Each Forecasting Method

Method Advantages Disadvantages Reference

Very robust, potentially infinite models
Relatively computationally simple . (36, 3§-

ARIMA Very well-established and well-defined in literature and Assumes linear data 41)
practice
Adjustable parameter can place higher/lower weights on

ETS more recent observations Not robust, effectively has only nine models (36: 42)
Suitable for data with no clear trend or pattern to choose from ’
Computationally simple
Allows the seasonal component to change over time .

STL Robust to outliers \]/);?:ﬁno(ﬁ automatically handle calendar (36: 43)
Can handle nonlinearity
Good for complex seasonality

TBATS Allows seasonality to change slowly over time Long computation time (36, 37)
Can handle nonlinearity

Neural Computationally complex

eu Good for complex nonlinear relationships Longer computation time (44-46)
Network p
Tendency to overfit

Minimizes the errors from each method Computationally complex

Ensemble Has been shown in literature to outperform pure statistical Lon I;s t com uzla tion ?ime (46, 47)
and pure machine learning methods & P
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RESULTS AND DISCUSSION

In order to determine if there exist consistent and reoccurring characteristics of ridership
data that tend to negatively impact univariate ridership forecasts, moving windows were
used to estimate a consecutive series of forecasts with 12-month-long horizons. The MAPE
and MASE were calculated for each forecast in order to record the changing performance
over time of the seven time series methods used in this study. A total of 2,940 forecasts
were estimated. The results of the pre-COVID forecasts are shown first in order to establish
a baseline of performance for the time series forecasting methods. Next, the results of the
full series forecasts are shown, followed by the post-COVID forecasts. Last, a summary of
the overall performance of each method for each time period is given.

Results of the Pre-COVID Analysis

For the pre-COVID period, 12 sets of forecasts were estimated in order to establish a
baseline performance considering the effect of a full year of seasonal changes in transit
ridership. The forecasting windows were selected by setting the last window to use the last
12 months of observations prior to the COVID-19 pandemic; therefore, the last set of
models used testing data from March 2019 to February 2020, and the first set of models
used testing data from April 2018 to March 2019 (see

Figure 3).

12-month moving window of testing data / forecasting horizon
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Figure 3 Moving Window for a Consecutive Series of 12-Month, Pre-COVID Forecasts

Each forecast estimated ridership for the following 12 months, and the estimates
were compared to actual ridership in order to evaluate the forecasting performance using
the MAPE and MASE (also referred to as “errors”). In this study, a forecast with a MAPE
below 5% was considered to have “good” performance, and a forecast with a MAPE below
10% was considered to have “acceptable” performance. A MASE less than 1.00 means the
forecast outperformed the simple naive method. In Figure 4, the errors for each forecasting
method at the Chicago Transit Authority were plotted alongside the time series of ridership.
In Figure 5, the errors for the Greater Cleveland Regional Transit Authority were similarly
plotted; these two agencies were selected as examples of the results found at each of the 14
agencies in this study. The change in errors is shown on the y-axis of the upper plots, and
the x-axis represents which testing/forecasting window was used, using the first month of

10
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the testing data as the identifier. The bottom plot shows the time series of monthly ridership
in unlinked passenger trips; although the models were trained on data beginning in January
2002, only the time series from January 2010 to the onset of the pandemic were included,
so that the pre-COVID trend and seasonal patterns are clearly visible.

Figure 4 shows that for pre-COVID ridership at the Chicago Transit Authority, all
but one model produced good forecasts. The ETS and ARIMA methods tended to
outperform the other methods. The neural network consistently underperformed compared
to the rest of the methods and struggled to produce forecasts that outperformed the naive
method. All models struggled to outperform the naive method for the forecasting windows
starting in November and December. Examining the ridership plot revealed a larger-than-
previous fluctuation in ridership from late 2018 to early 2019, which likely contributed to
the decrease in forecasting performance for those windows. However, thanks to Chicago’s
obvious strong seasonal patterns, the time series methods generally performed well.

Figure 5 shows that for pre-COVID ridership at the Greater Cleveland Regional
Transit Authority, the time series methods tended to produce acceptable results until the
testing window moved to begin in September 2018. The models’ performance appeared to
improve over the course of the first three testing windows, with the ETS and TBATS
methods even producing good forecasts with a MAPE less than 5%. However, beginning
with the fourth testing window, the performance steadily decreased. Examining the
ridership plot revealed discontinuities in relative seasonality in the data, especially in 2019.
Also in 2019, ridership decreases were steeper than in previous years, likely due to a
closure on the heavy rail line for maintenance over the summer of 2019 (48). Overall, there
appeared to be fewer and weaker seasonal patterns in Cleveland compared to Chicago,
which may have made forecasting more challenging in that region.

Figures for the other heavy rail agencies were not included for the sake of brevity.
At many agencies, there was a decrease in forecasting performance that emerged with the
testing window beginning in mid to late 2018. Often, the forecasts then improved, creating
a concave shape on the plots. For the agencies whose forecasts improved, the changes in
MAPE could be an arbitrary byproduct of measuring performance using an averaged
percent error, i.e., the MAPE could be sensitive to unexpectedly high/low seasonal
peaks/lulls in ridership, especially when the ridership has been overestimated, producing
negative percent errors (36). But for agencies with steadily worsening forecast
performance, in many cases, the decline in forecast performance could be related to the
trend in the data in 2019, i.e., larger changes in ridership compared to previous years.
Nevertheless, the majority of the models produced good or acceptable forecasts for all
agencies and all testing windows. Generally, about 90% of the models for each forecasting
method had an acceptable MAPE, and about 60% of the models had a good MAPE; the
one exception was the neural network, for which method only 43% of the models produced
a good MAPE. Despite the overall acceptable results, there were some agencies for which
ridership was consistently more difficult to forecast (Cleveland and Baltimore). This may
be due to the limited heavy rail service in those two cities, which each have only one heavy
rail line. No one method stood out as having particularly better performance compared to
all the rest for pre-COVID heavy rail ridership, although at individual agencies, some
methods did outperform the others.

11
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Change in MAPE with Change in Testing Window Start Date
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Change in MAPE with Change in Testing Window Start Date
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Results of the Full Series Analysis

Nine sets of forecasts were estimated for post-COVID ridership using the full data series
(January 2002 to December 2023). The STL methods require at least 25 observations in
order to produce forecasts. Therefore, the post-COVID series’ forecasts needed to train on
the data at least from April 2020 to April 2022. In order to compare between the forecasts
from the full series and post-COVID series, both periods’ first testing/forecasting window
began with May 2022, allowing for nine sets of forecasts to be estimated (see Figure 6).

12-month moving window of testing data / forecasting horizon

A
)

Apr. Apr. Jun. Aug. Oct. Dec. Feb. Apr. Jun. Aug. Oct. Dec.
20 22 22 22 22 22 23 23 23 23 ‘23 23

May

Jul. Sep. Nov. Jan. Mar. May
22 22 22 } K "

Jul. Sep. Nov.
22 23 23 23 23 23 "

23

\ /
25 minimum observations required for the post-
COVID-only time period

Figure 6 Moving Window for a Consecutive Series of 12-Month Post-COVID Forecasts Using the
Full Series and Post-COVID Time Periods

Each of the 882 models produced for the full series period were used to forecast
ridership for the following 12 months, and the errors were recorded. The errors for the
Chicago Transit Authority and the Greater Cleveland Regional Transit Authority are shown
in Figure 7 and Figure 8, respectively; in the plots, only post-COVID ridership is shown
in order to view the trends and patterns more clearly.

Figure 7 shows that for the full series period, most of the models for the Chicago
Transit Authority produced acceptable forecasts, with the exception of the neural network
models. Most of the models also outperformed the naive method, with the exception of a
few of the neural network models. No one method stood out as having particularly better
performance than all the other methods, although the ETS and TBATS methods produced
good forecasts earlier in the post-COVID period and the ensemble (hybrid) method
produced good forecasts later in the post-COVID period. The time series plot of ridership
shows clear seasonal patterns and a steady, positive trend, which likely contributed to the
ability of the time series methods to produce acceptable forecasts.

Figure 8 shows that, for the Greater Cleveland Regional Transit Authority, few of
the models produced acceptable results; however, all of the models outperformed the naive
method. No one method stood out as having better performance than all the rest, but the
neural network method underperformed. The time series plot of ridership shows a generally
positive trend but lacks clear seasonal patterns.

Overall for the 14 agencies, the ARIMA and ensemble methods outperformed the
other methods for post-COVID ridership forecasting using the full data series. Roughly 50-
55% of the models for all methods produced acceptable forecasts, but for the ARIMA

14
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Change in MAPE with Change in Testing Window Start Date
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Change in MAPE with Change in Testing Window Start Date
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method, 64% of the models produced acceptable forecasts. Roughly 5-10% of the models
for all methods produced good forecasts, but roughly 25% of the models using the ARIMA
or ensemble methods produced good forecasts. The neural network underperformed, with
less than 25% of the neural network models producing an acceptable forecast. The neural
network also struggled to outperform the naive method.

Results of the Post-COVID Analysis

Similar to the previous section, nine sets of forecasts were estimated for post-COVID
ridership, but now using only post-COVID data (May 2020 to December 2023). As
described previously, because of the short time span between the onset of the pandemic
and the time of this analysis, there were only 45 monthly observations for the post-COVID
period, 25 of which were required to train the models. Therefore, only nine sets of forecasts
could be estimated. The errors for the Chicago Transit Authority and the Greater Cleveland
Regional Transit Authority are once again shown in Figure 9 and Figure 10, respectively;
the upper plots are the change in error according to which testing/forecasting window was
used, and the bottom plot is the ridership in unlinked passenger trips.

Figure 9 shows that most of the models for the Chicago Transit Authority produced
acceptable forecasts when the training data included observations at least through July
2022. However, for the rest of the models, the forecasts did not produce acceptable
MAPEs. The ETS and STL-ETS methods were the exception; opposite to the rest of the
methods, the ETS method produced acceptable forecasts when the training data did not
include observations beyond July 2022. The STL-ETS method never produced an
acceptable forecast. Notably, the neural network method outperformed the rest of the
methods, with all but one forecast producing acceptable MAPEs. All models outperformed
the naive method, likely due to Chicago’s clear seasonal patterns and steady, positive trend.

Figure 10 shows that, for the Greater Cleveland Regional Transit Authority, almost
none of the models produced acceptable results, nor did many of them outperform the naive
method. Interestingly, about half of the models with forecasts starting on November 2022
produced an acceptable MAPE and outperformed the naive method; all but the neural
network improved when moving the testing/forecast window from October to November
2022. This result contrasted with the full series forecast for the same forecasting windows;
in Figure 8, the ETS, STL, and TBATS models worsened or stayed the same, while the
ARIMA, neural network, and ensemble models improved. Also, none of the full series
models for this testing window produced acceptable forecasts, whereas four of the post-
COVID models produced acceptable forecasts. Nevertheless, no method stood out as
having the best performance for Cleveland. As discussed previously, this may be partially
due to the data’s positive trend but only vague seasonal patterns.

Overall for the 14 agencies, the forecasts for post-COVID ridership using only post-
COVID data underperformed compared to the same forecasts using the full data series.
Most methods generally produced acceptable forecasts for around 45-50% of the models;
the exceptions were the ETS and STL-ARIMA methods, which only produced acceptable
forecasts for about 29% and 35% of the models, respectively. The neural network produced
good forecasts for about 15% of the models, and the ensemble and STL-ETS methods
produced good forecasts for about 13% and 11% of the models, respectively. The ETS and
STL-ARIMA methods only produced good forecasts for just over 1% of the models.
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Overall Results

In summary, the time series methods used in this study produced good or acceptable
forecasts for most heavy rail agencies before the onset of the COVID-19 pandemic. After
COVID, ridership forecasting for heavy rail agencies was more challenging. In all cases,
the good and acceptable forecasts tended to be concentrated at specific agencies, suggesting
that the performance of time series forecasts may be dependent on the characteristics of the
transit agency and its ridership. For example, for all forecasting periods, the forecasts for
the agencies in Cleveland and Baltimore tended to be poor. In contrast, forecasting was
more straightforward at some agencies such as those in Chicago, Miami, and Los Angeles.
The characteristics that influenced forecasting performance appeared to be the stability of
the trend and seasonal periods, which in turn were likely affected by factors like service
disruptions, the scope of the service area, and disruptive events like the COVID-19
pandemic.

Table 3 summarizes the percent of good and acceptable forecasts by method and
time period. The forecasts performed better when the training series was longer; however,
the performance of the forecasts appeared to be sensitive to either the last training or testing
observation (i.e., misleading training observations or greater changes in ridership month-
over-month). For example, many of the forecasts in the full series period had a decrease in
performance when the testing/forecasting window began with the observation from
October or November 2022. In most cases, there did not appear to be one common factor
among all transit agencies that caused better or worse performance than other months;
rather, the changing performance appeared to be random. However, one explanation for
the changing performance at individual agencies could be competing trends in the time
series data, e.g., seasonal fluctuations in ridership being masked by smaller increases in
ridership recovery in late 2022. Additionally, the neural network method underperformed
for the pre-COVID and full series time periods, but slightly outperformed the other
methods for the post-COVID time period. One potential reason for the neural network’s
mixed performance could be that its “P” parameter for the number of seasonal lags was set
to one (as opposed to 12) in order to avoid extreme overfitting when forecasting only with
post-COVID data. In the post-COVID data, there may have been a loss of seasonal patterns
at many agencies, so using only one seasonal lag could have given the neural network
models an advantage, assuming the previous month’s ridership became a better predictor
of future ridership than that of the previous year (30).

Table 3 also shows that the ARIMA and ensemble (hybrid) methods exhibited
relatively strong performance for the full series time period. Moreover, the ensemble
method performed relatively well for all time periods. The good performance of the
ensemble method may imply that no one forecasting method was able to adequately capture
all patterns in the time series data, but by combining the methods, perhaps the errors of the
individual models could be canceled out (46).
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Table 3 Percent of Models that were Good (MAPE < 5%) or Acceptable (MAPE < 10%) by Method
and Time Period

PTe lrrﬁil Performance | ARIMA | ETS A?{Tn%/f A %TTLS TBATS | NNET &f}’éde)
pro. | MAPE<10% | 9LI 809 | 911 | 905 | 8.9 | 8.5 | 929
COVID |\ VAPE<5% | 565 | 63.1 673 67.3 589 | 429 | 673
pul | MAPE<10% | 643 54 524 | 524 | 524 | 246 | 492
Series | MAPE<5% | 246 9.5 4 48 10.3 6.3 25.4
post. | MAPE<10% | 444 | 286 | 357 46 476 | 516 50
COVID | \iaPE<5% | 7.9 2.4 1.6 1.1 7.9 15.1 12.7

These findings are consistent with previous studies of time series forecasting
performance, both for transit ridership as well as other applications. Some pre-COVID
studies that compared the performance of time series forecasting methods for transit
ridership likewise found that combined methods of ridership forecasting, like the ensemble
method, tended to outperform the other methods (28, 29). Through the Makridakis
Competitions, a series of open forecasting competitions, the performance of time series
methods has been empirically evaluated and compared using over 100,000 diverse datasets
and every major time series method available (46, 49). These competitions have
consistently found that machine learning methods generally do not outperform simpler
methods (46, 50). One of the reasons behind the underperformance of pure machine
learning methods may be their tendency to overfit the data. Additionally, pure statistical
and machine learning methods were found to both underperform compared to hybrid
methods, especially those that combine statistical and machine learning methods (46).
Another relevant finding was that the performance of the forecasts depended on the length
of the forecasting horizon (50).

CONCLUSIONS AND FUTURE RESEARCH

This study compared the performance of seven time series methods for univariate ridership
forecasting at the 14 heavy rail agencies in the continental US. Three forecasting time
periods were examined: pre-COVID (prior to March 2020), full series (January 2002 to
December 2023), and post-COVID data (after March 2020). Nearly 3,000 forecasts were
estimated in order to understand the changing performance of time series forecasting
methods for transit ridership over time. The analysis revealed four major findings.

First, in the pre-COVID era, forecasting transit ridership using univariate time
series methods was relatively straightforward; 90% of the models produced good or
acceptable pre-COVID forecasts.

Second, the performance of the time series methods decreased in the post-COVID
era, although the models that trained off the full data series (i.e., pre- and post-COVID
data) overall produced slightly better forecasts compared to the models that trained only
off post-COVID data.
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Third, each individual method had changing performance according to which time
period was used for model training. In the pre-COVID period, no one method outperformed
all the rest, but the neural network slightly underperformed. Using the full series, the
ARIMA and ensemble (hybrid) methods outperformed the rest of the models, and the
neural network notably underperformed. However, using only post-COVID data to train
the models, the neural network and ensemble methods outperformed all the other methods.
The neural network may have outperformed the other methods when trained only on the
post-COVID data because it was set to use only one seasonal lag. This implies that, in the
post-COVID era, at some agencies, the previous month’s ridership may be a better
indicator of future ridership compared to the previous year’s ridership. The ensemble
method consistently performed relatively well for all time periods, perhaps due to its ability
to minimize the effect of the errors from any one forecasting method

Fourth, there were differences in overall performance of time series forecasting
methods by agency. At some agencies, the time series forecasting methods used in this
study tended to produce acceptable results regardless of which time period was used to
train the models. In contrast, at other agencies with more limited heavy rail service, for
every combination of method or time period almost none of the models produced an
acceptable forecast, and many of the forecasts did not even outperform the simpler naive
method.

In summary, this study demonstrates the general applicability of time series
forecasting for heavy rail ridership. Univariate time series forecasts like the ones utilized
in this paper are likely to be most suitable for agencies whose ridership data exhibit stable
seasonality, periodicity, and trends. Agencies who are interested in making time- and cost-
efficient forecasts need only to understand their own ridership data in order to forecast with
a univariate method. By using either Minneapolis Metro Transit’s forecasting tool or the
publicly available code written for this paper, transit planners and practitioners could
immediately begin generating their own time series forecasts to inform decision making
regarding annual budgets, service levels, staffing needs, and other similar tasks.

Several areas for future research have emerged from this study. Future research
should focus on forecasting ridership at smaller agencies, such as those in Baltimore and
Cleveland. Additional methods of forecasting should be considered, and the performance
of time series forecasts should be compared to that of the most common methods, such as
the four-step, activity-based, and regression-based models. Last, time series forecasting
should be tested for other transit modes, such as bus, light rail, or commuter rail.
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