

Complement or compete? The effects of shared electric scooters on bus ridership in Nashville, TN

Abubakr Ziedan, PhD
Nitesh Shah, PhD
Chris Cherry, PhD
Candace Brakewood, PhD

July 2, 2024 Transit Data

THE UNIVERSITY OF TENNESSEE KNOXVILLE

BIG ORANGE. BIG IDEAS.[®]

Background

- Shared e-scooter popularity has rapidly increased in recent years in the USA
 - 38.5 million shared e-scooter trips in 2018
 - 88.5 million shared e-scooter trips in 2019
- Transit agencies in the United States are concerned about nationwide transit ridership declines

 Could shared e-scooters contribute to transit ridership declines?

Two Key Research Questions

1. Does the number of shared escooters available within the bus route catchment area affect bus ridership?

2. Does the impact of shared e-scooters on transit ridership vary based on the *trip purpose*?



Photo Credit: Derek Hagerty

Data (1 of 2)

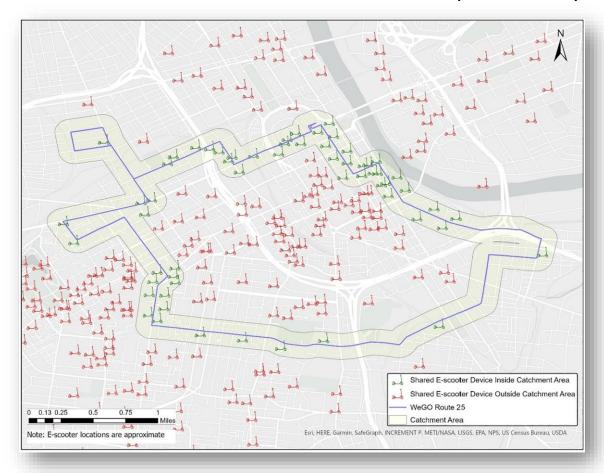
Category	Variable	Data Source	
Dependent variable	Unlinked bus trips	MaCa public transit	
Transit variables	Bus vehicle revenue mile (VRM)	WeGo public transit	
Shared e-	Device availability	Nashville MPO	
scooters	Trip summary	Nasiiville ivir O	
Other variables	Population	1-year American Community Survey Estimates	
	Employment	Bureau of Labor Statistics	
	Gas price	Energy Information Administration	
	Weather Data (Rainfall, and snowfall)	National Oceanic and Atmospheric Administration	

Data (2 of 2)

	Shared E-scooter Trip Purpose in Nashville				
Key Attributes	Daytime Short Errand	Morning Work/School	Utilitarian	Social	Entertainment Districts
Time and Location a	Weekday daytime downtown and Vanderbilt University short trips on cooler days	Weekday morning downtown and Vanderbilt University	Weekday downtown and urban areas	Weekend evening areas with restaurants	Weekend entertainment district areas like bars or live music venues
% of Total Shared E-scooters Trips	29.0 %	6.9 %	22.1 %	25.8 %	16.2 %
Average Trip Distance (Mile)	0.71	0.68	0.86	0.68	0.67
Average Trip Duration (Min)	17.13	13.07	17.36	16.53	15.07
Average Speed (MPH)	2.76	3.62	3.27	2.75	2.97
Route Directness Ratio ^b	0.49	0.60	0.64	0.52	0.57

^a Time and location show the typical values. However, a small portion of trips within each purpose might have different characteristics.

^b Route directness ratio represents the ratio between the Euclidean distance and the actual trip distance


Method

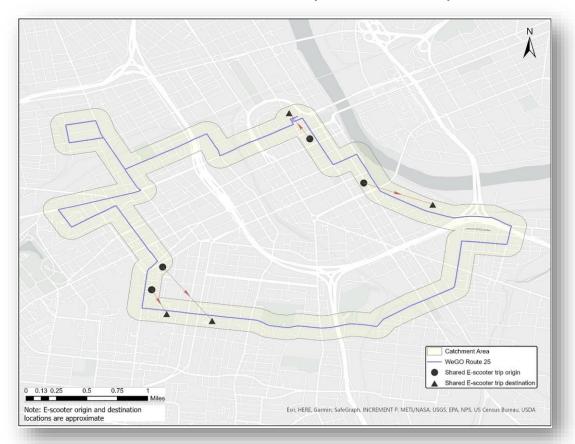
- Fixed effects regression
- Unit of analysis: bus route
- Study timeline: March 2016 to July 2019
- Study location: Nashville, Tennessee
- Why Nashville?
 - Part 1 (e-scooter availability): We had access to archived shared escooter device location data
 - Part 2 (e-scooter trip purpose): A parallel study defined different shared e-scooters trip purposes in Nashville (Shah et al.)
 - · Daytime Short Errand
 - Morning Work/School
 - Utilitarian
 - Social
 - Entertainment Districts

Method Part 1: Scooter Availability

Measure the number of **shared e-scooters available** within the bus route catchment area (0.1 mile)

Results Part 1

Does the number of **shared e-scooters available** within the bus route catchment area affect bus ridership?


Explanatory Variables	Weekday	Weekend	Monthly	
Vehicle revenue miles (VRM)	0.11*** (0.029)	0.14** (0.056)	0.20** (0.094)	
Shared e-scooter devices	0.04 (0.058)	0.08 (0.082)	0.07 (0.076)	
Population and employment (in 1000s)			35.96 (37.228)	
Average temperature (°F)			-403.86 (370.015)	
Snowfall (inch)			-249.58 (185.005)	
Route fixed effect	Yes			
Time fixed effect	Day	Day	Month	
R Square	0.425	0.163	0.305	
Number of observations	29445	8320	1384	

- VRM is a significant predictor of bus ridership
- The number of shared e-scooters devices do not have a significant impact on bus ridership

Method Part 2: Trip Purpose

Measure the number of shared e-scooters trips (origin and destination) for each trip purpose within the bus route catchment area (0.1 miles)

Results Part 2

Does the impact of shared e-scooter on bus ridership **vary** based on trip **purpose**?

Explanatory Variables	Weekday	Weekend	Monthly
Vehicle revenue miles (VRM)	0.12*** (0.034)	0.14** (0.055)	0.20** (0.093)
Shared e-scooter utilitarian trips	-0.93* (0.494)	0.02 (0.928)	-2.49** (1.067)
Shared e-scooter daytime short errand trips	0.12 (0.138)	-0.31 (0.369)	-0.93 (0.573)
Shared e-scooter social trips	0.30** (0.114)	0.29 (0.229)	1.35** (0.597)
Shared e-scooter entertainment district trips	-0.15 (0.133)	-0.02 (0.182)	-0.45** (0.200)
Shared e-scooter morning work/school trips	-0.08(0.78)	0.65 (0.694)	3.10 (2.507)
Population and employment			33.67 (37.59)
Snowfall (inch)			-373.30* (196.76)
Average temperature (°F)			-376.31(332.58)
Route fixed effect	Yes		
Time fixed effect	Day	Day	Month
R Square	0.426	0.169	0.325
Number of observations	34435	9738	1618

VRM is a significant predictor of bus ridership

Utilitarian trips have a significant negative impact on bus ridership

Social trips have a small positive, significant impact on bus ridership

Results Part 2 (continued)

	Estimated Impact on ridership on a typical Weekday (UPT per weekday)		Estimated Impact on a typical Weekday (%)	
	Route	Systemwide	Systemwide	
# of utilitarian trips	-6.4	-256	-0.94%	
# of social trips	5.8	232	0.86%	
Net impact	-0.6	-24	-0.08%	

The net reduction is equivalent to **0.08%** of the average weekday bus ridership

Conclusions

Findings

- Shared e-scooters impacts on bus ridership vary based on trip purpose
- The net impact of shared e-scooters was minimal in Nashville

Limitations

- Count some trips multiple times.
- This study used trip-based measures to assess trip purpose. The tripbased measures might be impacted by endogeneity.

Contributions

- Used infrastructure based measures to study the impact of shared escooters
- Explored shared e-scooter impacts based on e-scooter trip purpose

Thank you Questions?

CONTACT INFORMATION:

Candace Brakewood: cbrakewo@utk.edu

PAPER:

More details on this research can be found in the following page:

Ziedan, A., Shah, N., Wen, Y., Brakewood, C., Cherry, C., & Cole, J. (2021). Complement or compete? The effects of shared electric scooters on bus ridership. *Transportation Research Part D: Transport and Environment*, 101.

FUNDING:

This work was supported by the Transit-Serving Communities Optimally, Responsively, and Efficiently (T-SCORE) University Transportation Center Grant No. 69A3552047141 with matching funds from the Tennessee Department of Transportation (TDOT RES2021-15) and the University of Tennessee, Knoxville.

Fixed Effects Regression Model

• $y_{it} = \beta * x_{it} + \alpha_i EF_i + \rho_t TF_t + \varepsilon_{it}$

Where:

y_{it}: unlinked passenger trips for bus route i during time t (day, week, or month)

x_{it}: explanatory variables for bus route i during time t (e.g., shared e-scooter counts, vehicle revenue miles)

 EF_i : Entity fixed effect dummy, equal 1 for bus route i and 0 otherwise

 TF_i : Time fixed effect dummy, equal 1 for the t^{th} period and 0 otherwise

 ϵ_{it} : error term

