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ABSTRACT 1 

Shared electric scooters (e-scooters) have become a popular mode of travel in recent years across 2 

the United States. The rapid adoption of shared e-scooters has created different challenges for cities, 3 

including management of shared e-scooter parking. However, shared e-scooters have the potential 4 

to improve accessibility in cities as first/last-mile connections to transit. Some prior studies have 5 

proposed solutions to the parking issue, while others have proposed approaches to use e-scooters 6 

as first/last-mile connections. However, few if any prior studies have addressed these two aspects 7 

together, which is the focus of this analysis. This study proposes a mixed methods approach to 8 

select locations to place shared e-scooter corrals near transit stops to encourage the use of shared 9 

e-scooters connecting to transit using Nashville, Tennessee as a case study. The proposed method 10 

first used supervised machine learning to identify shared e-scooters trips that complement transit. 11 

Then, a multi-criteria scoring system was applied to rank bus stops based on shared e-scooter 12 

activity and bus service characteristics. Based on this scoring system, bus stops with the 50 highest 13 

scores were selected as potential locations for shared e-scooter corrals. Then, the capacity for the 14 

potential parking locations was estimated based on the hourly shared e-scooter usage. The results 15 

suggest that the 50 proposed corral locations could capture about 44% of shared e-scooter demand. 16 

The findings of this study could guide the implementation of shared e-scooter corrals in Nashville 17 

and inform other cities about how to select locations for shared e-scooter corrals near transit. 18 

 19 

 20 

Key Words: Shared e-scooters, bus stops, e-scooter corrals   21 
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INTRODUCTION 1 

Shared e-scooters are a relatively new mode of transportation, and they have rapidly gained 2 

popularity in the United States since they first launched in 2017. In 2019, more than 88 million 3 

shared e-scooter trips were made in more than 100 cities in the United States (1). The popularity 4 

of shared e-scooters has created some challenges for city planners and engineers, and one of the 5 

main challenges is related to shared e-scooters parking (1). Improper parked shared e-scooters 6 

could block sidewalks, impede access to bus stops, obstruct access to fire hydrants, and create 7 

safety hazards (1-4). Also, many residents in different cities have complained about improperly 8 

parked scooters. For example, 14% of the weekly shared e-scooters complaints in Portland, Oregon 9 

were related to parking (5), and this reached 42% and 75% of complaints in Santa Monica, 10 

California, and Alexandria, Virginia, respectively (1).  11 

Cities have taken different approaches to addressing this parking issue, mainly to improve 12 

parking compliance. For example, San Francisco's "lock-to" solution requires all shared e-scooter 13 

devices to have the ability to be locked to street furniture, which has reduced the number of 14 

improper parking complaints (1; 6). Other cities like Denver, Sacramento, and Seattle have chosen 15 

to increase the number of bike racks and on-street corrals to improve shared e-scooter parking 16 

compliance (1; 7; 8). Cities have also adopted other measures to manage e-scooter parking, like 17 

imposing fines. In Denver, fines are issued for shared e-scooter operators that fail to respond to 18 

improperly parked vehicles in a timely manner (8). In Nashville, riders could be fined if they park 19 

a shared e-scooter in a no-parking zone or block right-of-way (9). These different measures mainly 20 

aim to improve parking compliance. 21 

On the other hand, shared e-scooters have also created opportunities for cities. An 22 

important potential benefit of shared e-scooters is as a first-mile/last-mile solution to access public 23 

transit service (10). Shared e-scooters could be a good option for first/last mile connectors as they 24 

are faster than walking and their dockless nature provides flexibility in choosing the destination 25 

(11). Furthermore, numerous prior studies have shown that some riders are using shared e-scooters 26 

to connect to and from transit (6; 12). Notably, a prior study in Nashville, which is the focus of 27 

this analysis, suggested that some shared e-scooter trips are associated with an increase in transit 28 

ridership (13). However, the most pertinent requirement for riders to use shared e-scooters as 29 

connections to transit is the availability of shared e-scooters devices and parking near transit (10). 30 

This prior finding highlights the importance of shared e-scooter parking availability near transit to 31 

encourage using these two modes together.  32 

While the aforementioned shared e-scooter parking measures have achieved some level of 33 

success to reduce improper parking, a more comprehensive approach is required for better 34 

integration of shared e-scooters and transit. Therefore, this study proposes a method to prioritize 35 

locations to place dedicated shared e-scooter parking infrastructure (corrals) near transit stops to 36 

encourage the use of shared e-scooters to connect to/from transit. The approach relies on mixed 37 

methods, including a novel shared e-scooter trip segmentation analysis. The result is a ranked list 38 

of potential shared e-scooter parking locations that support the traditional transit system.  39 

The reminder of this paper starts with a review of relevant prior studies. Next, the 40 

motivation to use Nashville as a case study is provided. Then, the four-step methodology used to 41 

carry out this analysis is discussed. Next, the results and considerations for implementation are 42 

presented. Last, conclusions and areas for future research are provided. 43 

 44 

 45 

LITERATURE REVIEW 46 
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As shared e-scooters are a relatively new mode of travel, few prior studies have discussed the 1 

challenges associated with introducing shared e-scooters in a city, with parking as one of the major 2 

concerns. This section first presents a brief review of relevant prior studies that discussed shared 3 

e-scooter parking; then, the two most relevant prior studies pertaining to shared e-scooters in 4 

Nashville are summarized in greater detail. 5 

 6 

Studies about Shared E-scooter Parking 7 

This section briefly discusses prior studies that explored shared e-scooters parking locations or 8 

developed methods to locate shared e-scooters parking facilities or corrals. In Louisville, Kentucky, 9 

a prior study by Abouelela et al. studied about half million shared e-scooter trips to explore if 10 

shared e-scooters are parked near bus stops (Abouelela et al., 2021). Abouelela et al. found on 11 

average, shared e-scooters are parked 115 meters from the nearest bus stop, and 85% of the shared 12 

e-scooters trips ended within less 200 meters from the nearest bus stop (Abouelela et al., 2021). 13 

In Madrid, Spain, a prior study used Geographic Information System (GIS) location-14 

allocation models and moped-style scooter sharing trip data to propose parking locations (14). First, 15 

candidate locations were defined based on the number of trips started or ended in a 50 m x 50 m 16 

grid. Then, four scenarios were developed based on the total daily demand, morning demand, 17 

afternoon demand, and night demand. Then, the optimal locations were selected based on an 18 

optimization of the mentioned four scenarios. That study also imposed a minimum distance of 200 19 

m between the proposed parking location. The findings of this prior study showed that 200 parking 20 

locations covered 72% of the demand.  21 

In Nashville, Tennessee, which is also the location of this study, another prior study 22 

proposed a method to locate shared e-scooter parking facilities using historical trip data of two 23 

shared e-scooter operators (15). The prior study used k‐means, DBSCAN, and HDBSCAN 24 

algorithms to select areas with high demand for shared e-scooter parking. Then, a point within the 25 

area was selected to place the parking facility, ensuring the maximum capture of nearby trips. That 26 

study also used the width of the sidewalk near proposed locations as a factor in determining the 27 

final location of facilities. Areas with narrow sidewalks were given higher priority to reducing 28 

sidewalk blockage caused by improper parked shared e-scooter. The proposed relocation was 29 

found to sustainability reduce problematic parking (15). That study showed that the proposed 30 

parking locations in Vanderbilt university could capture 25% of shared e-scooters demand.  31 

The prior studies in Madrid and Nashville proposed methods to locate shared e-scooter 32 

parking facilities or corrals by focusing on the total demand of shared e-scooters, but they did not 33 

consider how e-scooter parking infrastructure interacts with transit. Therefore, this study aims to 34 

develop a method to propose locations of shared e-scooter corrals near bus stops to encourage the 35 

use of these two modes together.  36 

 37 

Shared E-scooters Usage and Impacts on Transit in Nashville 38 

This section discusses two prior studies that have explored shared e-scooter usage in Nashville and 39 

their impact on bus ridership (13; 16). The first of these two prior studies applied K-means 40 

unsupervised machine learning algorithms to explore shared e-scooter usage patterns utilizing 41 

different input data such as trip distance, trip duration, time of the day, route directness, land use, 42 

population density, and weather (16). Shah et al. identified the following five distinct trip purposes 43 

for shared e-scooter trips in Nashville: 44 

• Daytime short errand: short trips taken on weekday during in downtown Nashville  45 

• Utilitarian: longer trips with direct routes between origins and destinations 46 
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• Social: trips near commercial areas in downtown and near Vanderbilt University 1 

during daytime and evening 2 

• Entertainment district: mainly nighttime trips around entertainment areas like bars 3 

• Morning work/school: trips taken between 7 and 10 am in with direct routes 4 

between origins and destinations, mainly in downtown and near Vanderbilt 5 

University. 6 

 7 

The second prior study about shared e-scooters in Nashville explored their impacts on bus ridership 8 

based on the above-mentioned trip purposes. The results of that prior study suggest that on a typical 9 

weekday, social shared e-scooter trips were associated with increased bus ridership (13). This study 10 

builds on these prior findings to suggest locations for shared e-scooter corrals near transit stops in 11 

Nashville's central business district (CBD).  12 

 13 

CASE STUDY BACKGROUND 14 

This section provides background on Nashville, including the reasons for selecting it as a case 15 

study, the period of analysis, and the process for data acquisition. 16 

 17 

Why Nashville? 18 

This study uses Nashville as a case study for four reasons. First, shared e-scooters are popular in 19 

Nashville. In the first year after their official launch in late August 2018, seven different shared e-20 

scooters companies operated in Nashville, and more than 1.5 million shared e-scooter trips were 21 

taken (16). Second, Nashville was ranked third among cities that have the greatest potential for 22 

micromobility options to succeed in the United States in a study conducted by INRIX (17). Third, 23 

Nashville has a disaggregated shared e-scooters trip dataset available through public record 24 

requests (prior to the COVID-19 pandemic). Fourth, the good understanding of the usage of shared 25 

e-scooters and their impacts on transit in Nashville based on the findings of two prior studies (13; 26 

16). 27 

 28 

Period of Analysis and Data  29 

This analysis explored shared e-scooter trips in Nashville in the period October 2019 to February 30 

2020. The selection of this period depended on two major events. First, WeGo Transit (the local 31 

transit operator) made major changes to the transit system in Nashville in September 2019; 32 

therefore, the analysis period starts after the transit system change. Second, the analysis period 33 

ends in February 2020, just before the COVID-19 pandemic hit in the United States. 34 

This study used data obtained from two sources. The first data source was WeGo Transit's 35 

General Transit Feed Specification (GTFS), which was downloaded from the open mobility 36 

website (18). Bus stop locations were obtained from this GTFS data. The second source was the 37 

Shared Urban Mobility Device (SUMD) trip summary dataset obtained from the Public Records 38 

Department of Nashville metropolitan planning organization (MPO). This trip summary dataset 39 

included the timestamp and geolocation (latitude and longitude) of e-scooter trip origin and 40 

destination and basic trip information such as trip distance and duration. 41 

 42 

METHOD 43 

In order to propose potential locations for shared e-scooters corrals near transit, this study used a 44 

four-step, mixed methods approach, as shown in Figure 1. These four steps are discussed in detail 45 

in this section. 46 
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 1 

 2 
Figure 1: Study Methodology 3 
 4 

Step 1: Identification of Shared E-Scooter Trips Complementing Transit using Supervised 5 

Machine Learning 6 

The first step in this analysis was to classify shared e-scooter trips made after September 2019. 7 

This study applied supervised machine learning techniques to train the model and predict clusters 8 

for the new shared e-scooter trips (October 2019 to February 2020) (16). The first part of this 9 

section describes the data processing and variables selection, and the second part describes the 10 

model selection and e-scooter trip classification results. 11 

 12 

Data Preprocessing 13 

A cleaning process was applied for the shared e-scooter trips from October 2019 to February 2020, 14 

following similar criteria as the previous study (16). Shared e-scooter trips were removed if they 15 

met any of the following conditions: 16 

• Shorter than 200 feet or longer than 10 miles; 17 

• Trip duration less than 1 minute or more than 3 hours; 18 

• The average trip speed is more than 25 mph; 19 

• The trip origin and destination have exact coordinates;  20 

• The Euclidean distance ratio to the GPS trace distance between trip origin and 21 

destination is more than one; and 22 

• Trips that started or ended outside of the study area. 23 

 24 

This data cleaning process removed 31% of trips (out of 416,293) that were not likely actual trip 25 

records. The remaining 287,967 trips were merged with the built environment data obtained from 26 

traffic analysis zone (TAZ) data and weather data obtained from the Global Historical Climatology 27 

Network (GHCN). It should be noted that this is the same data preprocessing as in the previous 28 

study (16).  29 

 30 

 31 

Explanatory variables 32 

Step 1

• Identification of  shared e-scooter trips complementing transit using supervised 
machine learning

Step 2
• Assignment of shared e-scooters trips to bus stops

Step 3
• Ranking bus stops based on multi criteria scoring system

Step 4 
• Propose capacity for corrals using K-means clustering 
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Variance Inflation Factor (VIF) was used to selected which explanatory variables to include in the 1 

trip classification. Four variables with VIF > 10 were removed due to high correlation, leaving 26 2 

variables. It is noteworthy to mention that although time indicators that specify the trip starting 3 

time of the day and month of the year were retained, they showed high collinearity. The reason to 4 

retain them was shared e-scooter trips show a strong temporal pattern, and those indicators were 5 

used to capture seasonal effects. The descriptive statistics of the explanatory variables used in this 6 

study are shown in Table 1.  7 

 8 

Table 1: Descriptive statistics 9 

Variables 
Type of 

variable  

Shared e-scooter trips (N=287,967) 

October 2019 to February 2020 

Mean/ Count Min Max 
Route distance (miles) 

Continuous 

0.9 0.0 10.0 

Trip duration (minutes) 14.6 1.0 180.0 

Average trip speed (mph) 4.5 2.57E-04 24.9 

Route directness ratio 0.6 5.10E-05 1.0 

Entropy at origin 0.7 0.0 0.9 

Average population density at origin (per sq. miles) 8346.3 0.0 18555.7 

Average employment density at origin (per sq. miles) 83377.5 24.5 229577.1 

Average parking density at origin (per sq. miles) 14483.5 0.0 53492.3 

Intersection density at origin (per sq. miles) 546.2 20.7 808.1 

Entropy at destination 0.7 0.0 0.9 

Average population density at destination (per sq. 

miles) 
8230.0 0.0 18555.7 

Average employment density at destination (per sq. 

miles) 
83447.8 24.5 229577.1 

Average parking density at destination (per sq. miles) 14614.4 0.0 53492.3 

Intersection density at destination (per sq. miles) 544.3 20.7 808.1 

Average daily precipitation 0.1 0.0 1.5 

Average daily temperature   60.1 22.8 85.0 

% of trips starting at park 

Dummy 

4.5%   

% of trips starting at Vanderbilt University 10.3%   

% of trips starting at Nissan Stadium 3.8%   

% of trips ending at park 5.1%   

% of trips ending at Vanderbilt University 10.4%   

% of trips ending at Nissan Stadium 3.5%   

AM Peak trips (7 am to 10 am)  8.8%   

Daytime trips (10 am to 4 pm) 55.8%   

Evening Peak trips (4 pm to 8 pm) 29.0%   

Night trips (8 pm to 7 am) 6.4%   

Weekend trips 28.8%   

Trips starting on November-February 49.0%   

Trips starting on October 51.0%   

 10 
Algorithm 11 

Several studies have used supervised machine learning methods to classify trip purpose and 12 

identify mode of travel from the trajectory data obtained from the Global Positioning System 13 

(GPS) using discriminatory and generative predictive algorithms (19; 20). Discriminatory 14 

algorithms, such as Random Forest, use a conditional distribution of the class given the 15 

explanatory variables to predict clusters. Generative models, such as Naïve Bayes, use the joint 16 
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probability of explanatory variables and class probability to classify predicted clusters (20). Most 1 

prior studies apply several algorithms from both groups to find the best-performing model as a 2 

prior study found that the Bayesian network performed best among naïve Bayesian, logistic 3 

regression, multilayer perceptron, support vector machine, decision table, and C4.5 algorithm (an 4 

algorithm that generates decision tree) (19).  5 

In this study, three predictive algorithms were applied: logistic regression, random forest, 6 

and neural network. Trips from the prior study (13; 16) were used for model training (80% of trip 7 

records) and validation (remaining 20% of trip records). The new trip data (October 2019 to 8 

February 2020) were solely used for prediction. Additionally, a five-fold cross-validation method 9 

for hyper tuning model parameters was implemented to find the best-performing model for each 10 

algorithm based on accuracy scoring. The training score for logistic regression, random forest, and 11 

neural network were 85.3%, 94.1%, and 93.4% respectively, and the validation scores were 85.1%, 12 

94.1%, and 93.4%. The random forest model performed best among all models; therefore, it was 13 

used to predict the trip classification for new shared e-scooter trips taken during the study period 14 

(October 2019 to February 2020).  15 

Figure 2 illustrates the temporal pattern of trip purposes for both study periods. The black 16 

dashed line indicates when WeGo implemented some changes to the transit system in Nashville in 17 

September 2019. The predicted e-scooter trip classification shows a similar pattern as the previous 18 

study (16). The number of morning work/school trips is least among all trip purposes but relatively 19 

consistent over the study period. On the other hand, other trip purposes are influenced by special 20 

events, like New Years’ and National Football League (NFL) draft in April 2019, indicated by the 21 

spikes in average trip volume in Figure 2. 22 

 23 
 24 
Figure 2: Temporal pattern of shared e-scooter trips by trip classification 25 
 26 

Step 2: Shared E-Scooter Trip Assignment 27 

The following procedure was used to assign shared e-scooter trips to bus stops. First, 387 28 

bus stops that were located within Nashville’s CBD were selected, since most of the shared e-29 

scooters trips were in CBD. Then, a 0.1-mile buffer was created around each bus stop. Shared e-30 

scooters are dockless and can be parked very close to bus stops; this sized buffer was used in prior 31 
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studies that explored shared e-scooters impacts on bus ridership (13; 21). Next, the number of 1 

shared e-scooter trips starting and ending within the bus catchment area were counted for each day 2 

for each different trip purpose based on the previous step's results. It should be noted that only 3 

social shared e-scooter trips were explored as they were found to positively impact transit ridership 4 

in a prior study (13). Other trip purposes either had a negative impact or zero impact on bus 5 

ridership (13).  6 

These counts were then used as measures for shared e-scooter trip activity. Figure 3 shows an 7 

example of how shared e-scooter trips were assigned to two bus stops. In Figure 3, for the bus stop 8 

on the left, 18 shared e-scooter social trips started within the bus catchment area (shown as pink 9 

dots). The black dots show trips that started outside the catchment area of the bus stops. 10 

 11 

 12 
Figure 3: Example of shared e-scooter trips assignment method to bus stops 13 
 14 

Then, shared e-scooter trip counts were aggregated around bus stops. Figure 4 shows the 15 

average number of social shared e-scooter trips started around bus stops on weekdays in Nashville 16 

CBD. The size of the dots represents the average number of trips started within the bus stop 17 

catchment area. A similar step was followed to count the number of social shared e-scooter trips 18 

that ended within the bus catchment area (results are not shown). Those average counts were used 19 

in the multiple criteria scoring system as described in step 3.  20 

 21 
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  1 
Figure 4: Average number of social shared e-scooter trips on weekdays 2 
 3 

Step 3: Multi-Criteria Scoring System 4 

This study used a multi-criteria scoring system to rank the potential corral locations near transit 5 

stops based on shared e-scooter activity and the level of transit service. The average number of 6 

shared e-scooter trips that started and ended in the catchment area were used as indicators for 7 

shared e-scooters activity. The number of bus routes and the number of bus trips were used as 8 

measures for transit service. The rationale behind using the number of routes was that if two bus 9 

stops have similar shared e-scooter activity, the bus stop serving more transit routes will be 10 

prioritized. Similarly, if two bus stops have similar shared e-scooter activity levels and serve the 11 

same number of bus routes, the bus stop with the higher number of bus (vehicle) trips will be 12 

prioritized. This multi-criteria scoring system included the following variables:  13 

 14 

1. The average number of weekday social e-scooter trips that started within bus stop 15 

catchment area; 16 

2. The average number of weekday social e-scooter trips that ended within bus stop 17 

catchment area; 18 

3. The number of bus routes served on a typical weekday; and 19 

4. The number of bus trips served on a typical weekday.  20 

 21 

Next, an individual score for each bus stop was calculated for the four mentioned variables. This 22 
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score was calculated as the observed value for the bus stop divided by the maximum value 1 

observed among all bus stops for this specific variable. The final score was the sum of the 2 

individual scores for each bus stop, as shown in Equation (1).  3 

 4 

𝑆𝑖 =  ∑  (
𝑋𝑣(𝑖)

𝑋𝑣(𝑚𝑎𝑥)
) ∗ 1004

𝑣=1       (1) 5 

 6 

Where: 7 

S: score for bus stop (i)  8 

i: bus stop ID 9 

v: different variables used (1,2,3,4)  10 

𝑋𝑣(𝑖): the value of the variable 𝑋𝑣 for bus stop (i) 11 

𝑋𝑣(𝑚𝑎𝑥): maximum value of the variable 𝑋𝑣 of all bus stops 12 

 13 

Step 4: Propose Capacity for Corrals 14 

The fourth step in this analysis was to estimate the size of the proposed corral for each location. In 15 

order to do that, the hourly number of shared e-scooters trips that started with the bus catchment 16 

area was calculated. For each bus stop, the number of hourly shared e-scooters trips within the bus 17 

stop catchment area during the entire study period was ranked, then the 85th percentile was selected 18 

as the proposed capacity for the specific stop. Next, the proposed sizes for the 50 locations were 19 

classified into two clusters using the K-means clustering method using Tableau clustering analysis 20 

(22). It should be noted that for capacity estimation, all shared e-scooters trips were considered not 21 

only social trips, as these corrals would serve all trips. 22 

 23 

RESULTS AND CONSIDERATIONS FOR IMPLEMENTATION 24 

The four-step methodology was then applied to propose shared e-scooter corral locations in 25 

Nashville. Based on the results of Step 3, bus stops with the 50 highest scores were selected as 26 

potential locations for shared e-scooter corrals, as shown in Figure 5. These proposed locations 27 

could capture a considerable amount of shared demand; about 44% of shared e-scooter trips in 28 

Nashville ended within 0.1 miles of one these locations. This percentage suggests that these 29 

locations could help to solve parking issues as well as encourage the use of shared e-scooters to 30 

connect to transit. 31 

As discussed in Step 4, K-means clustering and the 85th percentile of the number of trips 32 

started were used to classify potential corral locations into two groups, as shown in Figure 5. The 33 

first proposed size is small (shown as blue in Figure 5), with the proposed capacity of five shared 34 

e-scooters, and the second proposed size is large (shown as red in Figure 5) with more than five 35 

shared e-scooters.  36 
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 1 
Figure 5: The proposed locations and sizes or shared e-scooters corrals near transit 2 
 3 

The results of this study proposed 50 candidate locations for shared e-scooters corral near transit 4 

in Nashville CBD ranked based on shared e-scooters usage and bus service characteristics. City 5 

planners and engineers can then assess these locations based on the available curb space, starting 6 

with the top of the list. Based on space availability, it is unlikely that all 50 locations will be 7 

implemented. However, some of these potential locations are very close due to similarities in 8 

shared e-scooter activity, which provides flexibility during implementation as the physical space 9 

might be limited in some locations.  10 

While the availability of physical space would govern the installation of shared e-scooter 11 

corrals, it is important to briefly discuss some practical aspects that cities could consider during 12 

the installation. First, as space might be limited near bus stops, cities could consider converting 13 

some curb space designated no-parking areas or on-street parking spots to shared e-scooter corrals. 14 

Second, some of the proposed bus stops are inbound/outbound stops for the same bus routes. If 15 

only one of them was chosen to install a shared e-scooter corral, cities should consider the 16 

willingness of riders to cross the street to park a scooter and the availability of pedestrian 17 

infrastructure like crosswalks. Third, cities could require shared e-scooters operators to place e-18 

scooters on corrals as the operating companies redistribute their fleets. Last, as the cities implement 19 

enough corrals to meet demand, they could consider imposing fines for improperly parked scooters. 20 

 21 

CONCLUSIONS AND FUTURE RESEARCH 22 

Cities across the United States are facing challenges with the increased popularity of shared e-23 

scooters as an emerging mode of transportation, including improper parking. Cities have tried 24 

different approaches to improve parking compliance. However, these prior approaches did not 25 

consider installing shared e-scooters corrals near bus stops to improve parking compliance and 26 

encourage the use of shared e-scooters as first/last mile connectors to transit.  27 
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This study used a four-step, mixed methods approach to identify 50 potential locations for 1 

shared e-scooter corrals near bus stops in the central business district of Nashville, Tennessee. The 2 

proposed locations could capture about 44% of shared e-scooter demand trips in Nashville. The 3 

findings of this study provide data-driven recommendations for the City of Nashville to manage 4 

the public space for e-scooter parking and better integrate this emerging urban mobility mode with 5 

transit. The proposed method can also inform other cities to identify scooter corral locations within 6 

their jurisdiction. The findings of this study could also be considered a first step towards the 7 

integration of these two modes to offer better accessibility for riders. Future integration of these 8 

two modes should consider aspects such as allowing riders to plan, book, and pay for both trips 9 

together. 10 

There are several areas for improvement and future research that could be pursued. First, 11 

this study identified potential locations for shared e-scooter corrals; however, this study did not 12 

consider the physical characteristics of the location such as the size of existing curb space, which 13 

is a possible area for improvement. Another area for improvement is considering additional 14 

variables (e.g., outside popular restaurants, near popular music venues, etc.) in the multi-criteria 15 

scoring system. One area for future research is to explore the effectiveness of shared e-scooters 16 

corrals to enhance parking compliance. Another area for future research could be related to other 17 

policies cities could adopt to encourage the use of transit and e-scooters together, such as integrated 18 

trip planning and payment and price bundling. 19 

The findings of this study could guide the implementation of shared e-scooter corrals in 20 

Nashville and inform other cities about how to select locations for shared e-scooter corrals near 21 

transit. 22 
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