

**INTERACTIVE TRAVEL MODES:
UBER, TRANSIT AND MOBILITY IN NEW YORK CITY.**

Word Count: 4,788 (text) + 250 * 7 (figures and tables) = 6,538

Revision Date: November 15, 2016

Adam Davidson (Corresponding Author)
CUNY Graduate Center
365 Fifth Avenue, Rm 4306
New York, NY 10016
Email: adavidson@gradcenter.cuny.edu

Jonathan Peters, PhD
The College of Staten Island
Room 3N-220, 2800 Victory Blvd., Staten Island, NY 10314
Email: Jonathan.Peters@csi.cuny.edu
Phone: 718-982-2958

Candace Brakewood, PhD
The City College of New York
160 Convent Avenue, New York, NY, 10031, USA
Email: cbrakewood@ccny.cuny.edu
Phone: 212-650-5217

1 ABSTRACT

2
3 Smartphones have progressively become an essential tool to help people produce or achieve
4 mobility by providing contextual wayfinding information and serving as a key asset in enabling
5 new shared-mobility services.

6 Using two unique data sets this paper explores how smartphone applications may enable multi-
7 modal transport behavior. The data sets are user-level interactions from a smartphone application
8 called *Transit* (which seeks to easily informs users of transit, bikeshare, carshare, and Uber
9 access based on their geographic position), and Uber ride-hail origin data released publicly
10 through the New York City Taxi and Limousine Commission. It is believed that users who
11 request Uber through the Transit app are signaling their intent to try transit first, but are willing
12 to move on to other modes when transit does not meet their needs. Thus, Transit application
13 users are more likely to request an Uber near a subway station as complement (for example,
14 instead of a transfer) or a substitute (to avoid a long wait) to transit.

15 After organizing data by location, this paper finds that Transit app users request Ubers at a
16 higher rate both within 250 feet of a transit station and with greater dispersion across the entire
17 city than the general population of Uber ride-hails. This suggests that Transit app users are
18 attempting to use Uber to make up for gaps in their transit options. This finding aligns with
19 previous studies where people have indicated that the tools on their smartphone allow them to
20 assert more control over their transportation outcomes, particularly when they choose not to
21 drive.

22 INTRODUCTION

23 Smartphones have progressively become a tool to help people produce or achieve mobility.
24 Using increasingly robust, yet easily interpretable data about various transport options,
25 smartphone users can choose between a wide and growing number of transport services to plan
26 their journeys and make the process of mobility easier. This collection of services includes:

- 27 1. Interactive transit schedules and real-time public transit information;
- 28 2. Live traffic congestion data;
- 29 3. Shared-economy services – this includes new travel mode categories such as bike share
30 and car share; and new challengers in existing modes such as Uber and Lyft towards taxi
31 services.

32 Often, these transportation services are studied independently. However, a user of one of these
33 services is typically using a smartphone and can just as easily access information about the other
34 services by switching apps. Some apps, such as the *Transit* app¹ – which will be a focus in this
35 paper – present much of that information in one interface known as a mobility aggregator.
36 Mobility aggregators have easy-to-follow information that makes it much easier and more
37 reasonable for a traveler to execute a multi-modal journey.

38 Despite the availability of mobility aggregators like the *Transit* app, the majority of these
39 services tend to operate independently. Further, most of the ‘shared-economy’ services described
40 above are run by private companies who have no obligation to make their data available to the
41 public. Therefore, very little is known about how these services interact with each other and
42 other mobility aggregators as travelers make their way from origin to destination with the
43 assistance of their smartphones.

44 RESEARCH QUESTION

45 This paper will use two unique data sets to explore how smartphone applications focused
46 on transport services encourage multi-modal transport behavior. The data sets consist of user-
47 level interactions in the *Transit* application (a smartphone application that easily informs users of
48 transit, bikeshare, carshare, and Uber access based on their geographic position), and the general
49 population Uber ride-share origin data released publically through the New York Taxi and
50 Limousine Commission (TLC). This paper is based on the assumption that users who request
51 Uber through the *Transit* app are signaling their intent to try transit first, but are willing to move
52 on to other modes when transit does not meet their needs. Based on this assumption, we
53 hypothesize that *Transit* app users will request Ubers near transit stations at higher rates than the
54 general population of Uber users. If this hypothesis is correct, it would align with previous
55 studies in which travelers have indicated that the tools on their smartphone allowed them to
56 make more informed transportation decisions [1], particularly when they choose not to drive [2].
57

¹ *Transit* (the smartphone application) was originally called the *Transit App*. In order to avoid confusion between *Transit* (the app) and transit (the general name for mass transport), this paper will refer to the smartphone application as the ‘*Transit app*’ or the ‘*Transit application*’.

59 LITERATURE REVIEW

60 The rise of Transportation Network Companies (TNC) such as Uber, and mobility
61 aggregators like Transit app is due to vast improvements in information and communication
62 technology (ICT), which are exemplified by the smartphone. Changes in transportation have long
63 been linked to changes in communication technology, as both activities are complimentary and
64 substitutable [3]. Increasingly, travelers are using digital information communicated via their
65 smartphones to achieve more reliable mobility outcomes. The rise of the mobile phone has
66 allowed users to communicate without remaining at fixed locations [4], which can then “permit
67 new practices and innovation in our relationship with space and travel” [5]. In fact, mobile
68 devices are purposefully meant to interact with the environment [6]. Ubiquitous computing
69 platforms like smartphones often have the ability to modify, control, utilize, and regulate space
70 (such as a surveillance system, digital thermostat, or traffic signal). Increasingly, with their
71 connected devices, people can now proactively manage their use of space and time. New digital
72 services allow people to use their personal ICT devices to plan a trip, find a ride, share bikes or
73 cars, or avoid traffic congestion in real-time [7][1].

74 ICTs in particular have enabled significant new forms of travel at mass market scales [8].
75 An overwhelming majority of these forms of travel are now shared transportation modes in
76 which users can utilize excess capacity of discrete goods/services for travel [9][10]. Unlike
77 traditional transportation systems that are publicly maintained, many new ICT-based
78 transportation services are often private start-ups. These ICTs include car share (ZipCar,
79 Car2Go), ride-sourcing (Uber, Lyft) and some bike-sharing services (CitiBike, Zagster). These
80 new travel options, combined with improved transit and road congestion information made
81 available by mobility aggregators, produce a curated travel experiences for users based on their
82 exact location, the time of day, and accessible transportation alternatives.

83 Yet, these new transport services are not without their controversy. For example, many
84 localities - even whole countries - have attempted to ban Uber, as most government entities were
85 not prepared for Uber’s meteoric rise [11]. Regulatory bodies and incumbent actors were
86 surprised and challenged by the new technology and did not have the necessary frameworks to
87 handle the Uber service [12]. While these agencies have more-or-less come to accept the new
88 challenges of TNCs, the costs and benefits of ride-sourcing are understood much more
89 anecdotally than quantitatively. The services are clearly well used and expanding every day, but
90 detailed data on ride-sharing’s tangible social costs and benefits are inconsistent and hard to
91 come by.

92 By contrast, the passenger benefits of real-time travel information, particularly in public
93 transportation, has been increasingly well-documented using widely available data.
94 Implementation of real-time arrival systems have led to increased ridership, satisfaction, and
95 perceptions of control [13][14][15]. In a series of focus groups conducted in late 2013,
96 smartphone users expressed an improved ability to travel to new parts of town, try different
97 travel modes, and manage their time more effectively due to newly available real-time travel
98 information. In fact, the users acknowledged an actual, and growing dependence on this [2].

99 Fueled by technology and information, people increasingly use their smartphones as their
100 primary source of mobility information.

101 Hence, it is logical that some travelers would combine shared mobility services with
102 transit information to better achieve their transport preferences for speed, convenience and costs.
103

104 **DATA**

105 This paper's analysis utilizes two unique datasets related to Uber use in New York City.
106 The first data set, is a sample of Uber trip origins for a six-month period in 2014. The second is
107 comprised of Uber requests summoned through the Transit app. These datasets are described in
108 detail in the following paragraphs.
109

110 **TLC Uber data**

111 Rules about for-hire-vehicles (FHVs) in New York City require all FHV drivers to be
112 licensed by the Taxi and Limousine Commission and associated with a dispatch base. Uber is
113 considered one of these FHV under New York law. As a result of evolving FHV reporting rules,
114 Uber origin data has been reported to the TLC from the dispatch bases since 2014. Since this
115 data was now in the hands of a public agency, it became a candidate for a Freedom of
116 Information Law (FOIL) request. The data-journalism blog FiveThirtyEight.com conducted a
117 FOIL request for the Uber origin data and was rewarded with six months (April through
118 September 2014) worth of Uber origin data by latitude/longitude, and six months (January – June
119 2015) of Uber origin data by 'taxi zone' (a TLC specific geographic unit a bit smaller than a zip
120 code). They used this data to examine several claims about Uber use and traffic congestion on
121 their popular blog [16][17].

122 FiveThirtyEight then made this data accessible to the public along with the FOIL
123 documentation on a GitHub repository in 2015 [18]. Currently, the 2014 TLC dataset of Uber
124 origins published by FiveThirtyEight is the only publically available large scale view into Uber
125 origins at the fine resolution provided by latitude/longitude coordinates. Both the 2014 and 2015
126 data sets reveal only origin location and timestamp data.
127

128 **Transit app Uber data**

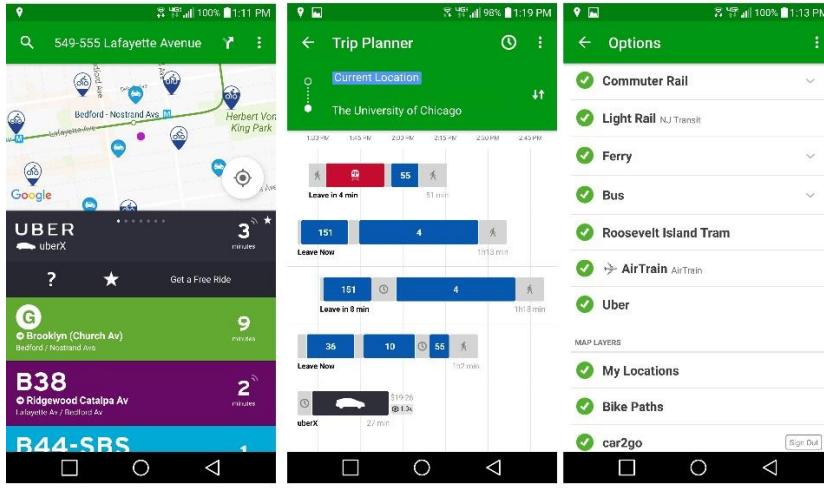
129 The Transit application agreed to disclose their data to this paper's research team for academic
130 inquiry. As its name implies, Transit app primarily focuses on providing information about
131 transit services, but as of 2015 it also integrates several 'shared' mobility services including an
132 ability to reserve a Car2Go (car-share), Uber (ride-share/ride-source), and find availability on
133 most bike share systems. Because of these features, Transit app has become one the more
134 popular public transit related apps and concurrently one of the larger referrers to the Uber
135 system. Part of its popularity lies in the application's ability to provide comprehensive mobility
136 information in an easy-to-read interface with minimum input from the user.

137 The Transit app works by sending the user's GPS coordinates to a server, which then
138 returns schedule and real-time information for all nearby transit lines and supported mobility

139 services. The results for the user are a series of tiles (an interactive list) of transit lines with the
 140 next scheduled departure clearly displayed for each service, as well as a map of nearby car-share
 141 and bike-share services. Embedded within the transit information is an Uber tile that displays an
 142 estimated pickup time from the user's location (see Figure 1). Tapping this tile launches the Uber
 143 app and starts the process for a ride request.

144
 145

Figure 1: Screenshots of the Transit app show the availability of multiple travel modes



146
 147

148 The Transit app dataset analyzed for this paper contains records of user interactions with
 149 the software interface and is considered a form of data exhaust [19]. This dataset is necessary for
 150 the application to know what information to serve to which user at the transaction level, but can
 151 be used for a secondary purpose to discern systemic patterns. The user interactions in the dataset
 152 include opening the app, tapping a tile for more information, asking for directions, or reserving a
 153 shared mobility service. To provide transportation information to the users, the application needs
 154 to identify individual user devices and the locations of those devices. While the dataset is very
 155 detailed in terms of activities and data queries, it is geared towards the operation of the
 156 smartphone application, as opposed to answering research questions. Names or demographic
 157 variables are not requested nor stored, which protects the anonymity of users.

158

159 DATA HARMONIZATION AND DESCRIPTIVE STATISTICS

160
 161

While both representing Uber rides, the TLC and Transit app data sets have differences
 that need to be addressed in order to make proper comparisons.

162
 163
 164
 165
 166
 167
 168

Probably the largest limiting factor is the restriction to New York City. Both the Transit
 app and Uber operate globally, thus both companies have the potential to produce similar data
 sets across jurisdictions. This parallel in itself can be valuable for transportation researchers who
 are typically limited by data collected by government authorities serving specified geographies.
 However, in this case, while the available Transit app data is global, the available Uber origin
 data was filtered through the New York TLC. As a result, this paper's analysis is limited to
 comparing Uber trips against Transit app activity in New York City only.

169 Further, while both the TLC and the Transit app have Uber data from 2015, the binning
 170 of the more recent 2015 TLC data into taxi zones is a very rough spatial resolution, which results
 171 in difficulty spatially assessing whether a trip was influenced by the transit system. Alternatively,
 172 the raw latitude/longitude coordinates found in the 2014 TLC data allow us to look at the
 173 dispersion of Uber origins with higher precision. Unfortunately, the Transit app did not offer the
 174 Uber Request feature until 2015. Therefore, we are left comparing data from consecutive years
 175 (TLC-Uber in 2014 to Transit app-Uber in 2015). While this would be nearly a non-issue for
 176 established transport services, major differences might be present for these fast growing start-ups
 177 in the span of one year.

178 To understand if the TLC data is spatially different in different years, the 2014 TLC data
 179 was put into the same taxi zone bins as the 2015 data. The result was that even though the growth
 180 in the total number of trips was substantial, the proportional change per taxi zone was small. By
 181 broadly aggregating trips that originated inside the Central Business District (CBD) versus
 182 outside of it, the percentage of trips outside the CBD increased by just 6.3% of total trips, even
 183 though the total count of trips grew by nearly 225% system wide.

184
185

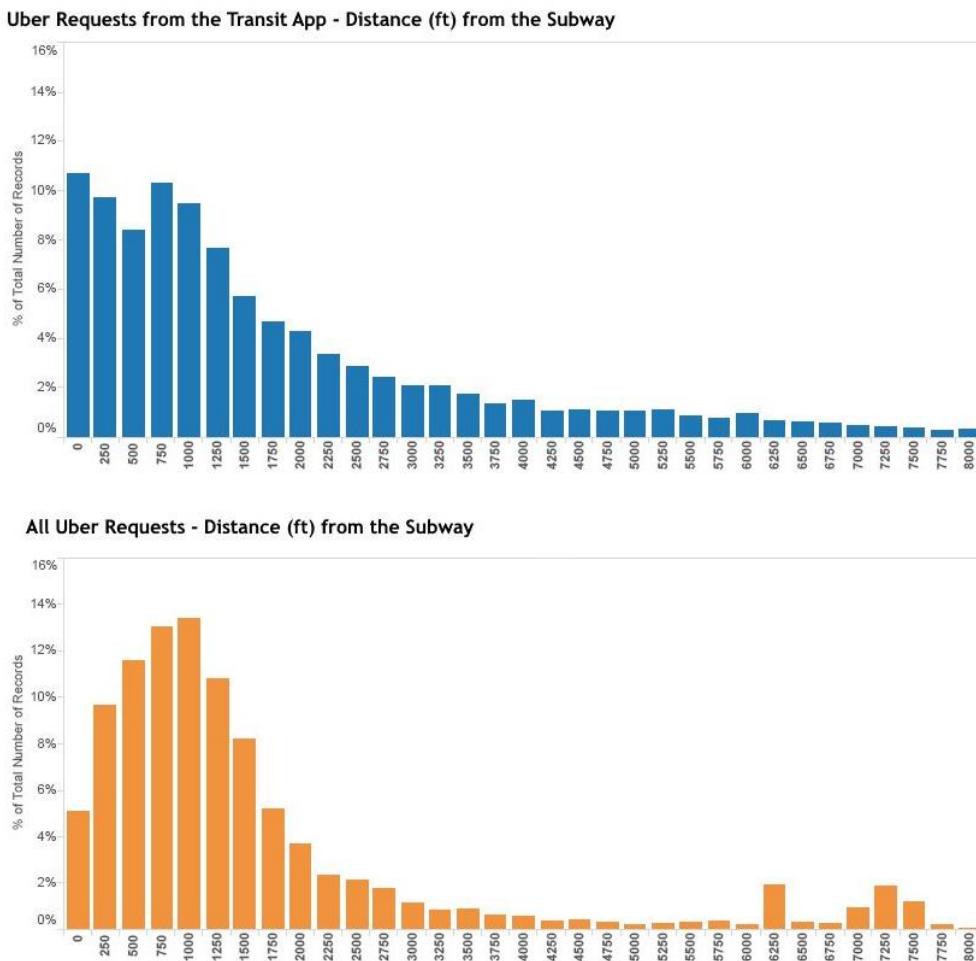
Table 1: Basic comparisons between data sources.

Year	Time frame	n	Growth	In CBD*	%CBD	Data type
TLC - Uber origins						
2014	6-mo (Apr-Sept)	4,412,080	NA	3,360,280	76.2%	Lat/Long
2015	6-mo (Jan-June)	14,271,895	223.5%	9,974,257	69.9%	Binned by zones
Transit application - Uber requests						
2015	6-mo (Apr-Sept)	32,398	NA	4,205	13.0%	Lat/Long

*CBD (Central Business District) is defined as Manhattan south of 110th St and is based on the exclusive service area for Yellow Taxis

186
187
188
189
190
191
192
193
194
195
196
197
198
199

 Viewing the table above, an immediate comparison between the TLC and the Transit app data is apparent. It is clear that unlike the TLC population data set, the Transit app population is strongly dispersed outside of the CBD. In the 2015 sample, nearly 87% of Transit app Uber requests occurred outside of the CBD, while just 30% of total Uber trips occurred outside of the CBD. Further confirming this dispersion is a GIS kernel density analysis. The maps in Figures 2 & 3 show the relative density of Uber origins for the TLC and Transit app samples. These maps lay bare two observations: 1) that the TLC-Uber sample is highly concentrated into the Manhattan CBD, and 2) that the Transit app-Uber sample shows a higher cluster of activity near subway stations - especially outside the CBD. This observation is further confirmed with an exploratory histogram of the two data sets (Figure 4). The Transit app has a much higher percentage of trips within 250 feet of a transit station than the TLC data set. Additionally, the entire dataset is more gradually distributed than the TLC data. Further exploration of these key observations is the main focus of this paper.

Figure 4: Histogram of Uber requests by data set and distance from the subway.202
203

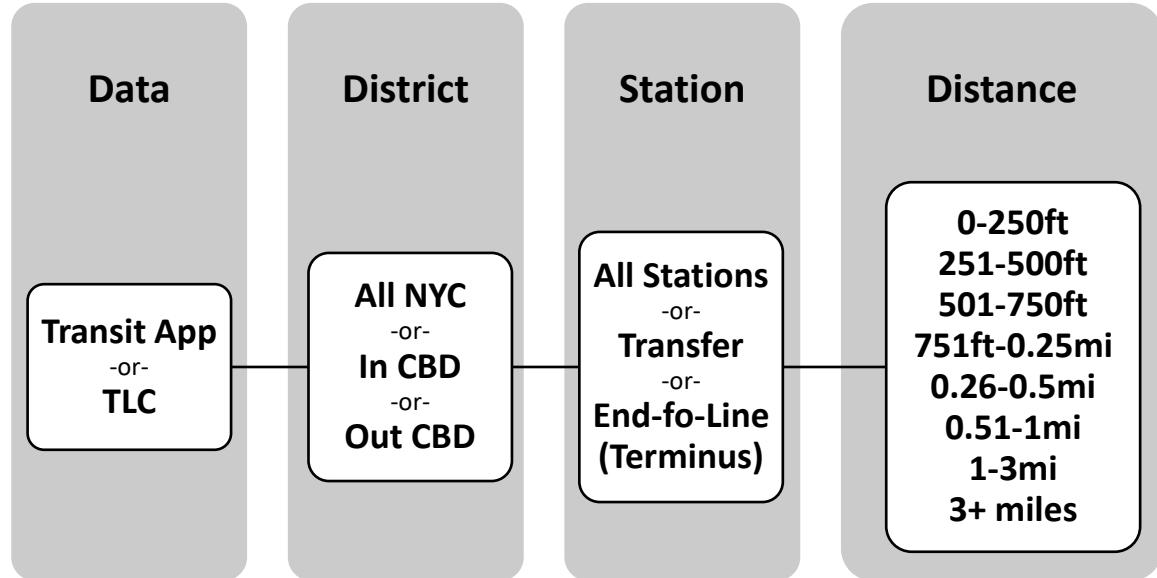
METHODOLOGY

204 In order to relate Uber trip origins to transit locations, both data sets needed to be
 205 spatially related using a GIS system and then tabulated. This relationship allowed for a
 206 calculation of the distance from each Uber origin point to the nearest transit station. Stations
 207 were further designated as transfer stations (where users could change lines other than between
 208 local and express), and end-of-line stations at the terminus. These designations added a
 209 dimension that permitted evaluation of whether people were more likely to request an Uber near
 210 transit where a transfer would also be likely due to the presence of other high frequency services.

211 Another important grouping of the data sets involved determining if an origin point
 212 occurred in the Manhattan Central Business District. For the purposes of this paper, that area is
 213 defined as Manhattan south of 110th Street, which is also the exclusive service territory for
 214 Yellow taxis. (In 2013 the Green Taxi program was started to serve upper Manhattan and the
 215 Boroughs as approximately 80% of all Yellow taxi trips began and ended south of Harlem. A
 216 Green taxi ride must either begin or end outside of this zone.) The CBD designation is important
 217 because the geography, density, and land-use of this area of Manhattan means that nearly all

218 activities will occur near subway service, so it is more tenuous to connect Uber activity directly
 219 to subway activity in this area rather than outside of it. For this reason, this paper evaluated the
 220 data from the CBD separately from the other data points. To count the records, this paper
 221 assigned each record in a 100% sample of the Transit app 2015 data (n=32,398) and a 5%
 222 random sample of the much larger TLC 2014 data (n=220,604 of 4,412,080) with a subway,
 223 transfer, and end-of line distance field as well as a CBD flag. Using these calculations, the
 224 records were sorted into 144 bins following the organization in Figure 5.
 225

226 **Figure 5:** Record characterizations resulting in 144 unique bins



227
 228
 229
 230 Due to a difference in the size of the samples, the bins were compared by calculating the percent
 231 in each bin of the total sample size for each dimension. Bins were sorted and compared using
 232 ESRI ArcMap GIS, Tableau, and R.
 233

234 FINDINGS

235 A comparison of the bins is presented in Table 2. Transit app-Uber origins are more
 236 likely to be closest to subway stations than the general TLC sample of Uber origins. As
 237 discussed above, more attention is being paid to origins outside the CBD since travel activity
 238 near non-CBD subway stations is more likely to be related to those stations, though there are also
 239 some notable observations inside the CBD as well.

240 Consistently, a higher percentage of origins in the '0-250 ft' distance from station bins
 241 occur in the Transit app data set. For example, outside of the CBD 9.6% of Uber origins from the
 242 Transit app occurred within 250 feet of a subway station, compared to 4.3% of origins from the
 243 TLC data. Calculating a ratio of the difference in proportion between the Transit app and the
 244 TLC reveals that the Transit app saw a 55% higher proportion of Uber origins at all Subway
 245 stations, 24.6% higher proportion of origins at Transfer stations, and 90.2% higher proportion of

246 origins at End-of-Line stations when compared to the TLC data. However, this relationship
 247 deteriorates rapidly past 250 feet. Both data sets have approximately 75% of activity (TA =
 248 74.1%, TLC=77.6%) occurring more than 750 feet from All Subway stations outside of the
 249 CBD.

250 The Transit app's strongest and most consistent advantage was when Uber users
 251 requested rides near end-of line stations. The Transit app had a 370% higher proportion of Uber
 252 requests than the TLC data within 750ft of these stations. All end-of-line stations are outside of
 253 the CBD.

TABLE 2

Proportion of Uber Origins by data source, distance and type of subway station

Distance	0-250 ft	250-500 ft	500-750 ft	750ft-0.25 mi	0.25-0.5 mi	0.5-1 mi	1-3 mi	3+ miles	Sum	Bin Size
District	Closest Station									
All Stations	Any Station	10.7%	10.1%	8.8%	20.6%	21.7%	13.6%	12.1%	2.4%	100%
	Transfer	2.7%	2.0%	1.9%	4.7%	10.2%	19.4%	47.0%	12.0%	100%
	End-of-line	0.8%	0.7%	0.5%	1.3%	5.2%	15.7%	54.4%	21.5%	100%
Inside CBD	Any Station	18.3%	19.2%	16.7%	24.3%	16.7%	4.8%	0.0%	0.0%	100%
	Transfer	10.6%	8.0%	9.4%	21.2%	23.8%	14.9%	12.2%	0.0%	100%
	End-of-line	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	14.9%	85.1%	100%
Outside CBD	Any Station	9.6%	8.7%	7.6%	20.0%	22.4%	14.9%	13.9%	2.8%	100%
	Transfer	1.6%	1.1%	0.8%	2.3%	8.2%	20.0%	52.2%	13.8%	100%
	End-of-line	0.9%	0.8%	0.6%	1.5%	6.0%	18.0%	60.2%	12.0%	100%
District	Closest Station									
Transit app - Uber Origins (Apr-Sept 2015)										
All Stations	Subway	7.9%	16.1%	19.0%	29.5%	18.1%	4.2%	5.1%	0.1%	100%
	Transfer	3.2%	6.4%	8.5%	21.6%	27.1%	17.9%	14.8%	0.5%	100%
	End-of-line	0.0%	0.0%	0.1%	0.1%	0.5%	1.4%	18.4%	79.5%	100%
Inside CBD	Subway	9.1%	18.6%	21.9%	30.8%	16.3%	3.3%	0.0%	0.0%	100%
	Transfer	3.8%	7.7%	10.5%	26.7%	30.3%	13.8%	7.2%	0.0%	100%
	End-of-line	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	11.2%	88.8%	100%
Outside CBD	Subway	4.3%	8.2%	9.9%	25.2%	23.7%	6.8%	21.4%	0.4%	100%
	Transfer	1.2%	2.2%	2.2%	5.5%	16.9%	31.0%	38.8%	2.3%	100%
	End-of-line	0.1%	0.1%	0.2%	0.5%	2.1%	5.9%	41.1%	50.0%	100%
TLC- Uber Origins (Apr-Sept 2014)										
All Stations	Subway	7.9%	16.1%	19.0%	29.5%	18.1%	4.2%	5.1%	0.1%	100%
	Transfer	3.2%	6.4%	8.5%	21.6%	27.1%	17.9%	14.8%	0.5%	100%
	End-of-line	0.0%	0.0%	0.1%	0.1%	0.5%	1.4%	18.4%	79.5%	100%
Inside CBD	Subway	9.1%	18.6%	21.9%	30.8%	16.3%	3.3%	0.0%	0.0%	100%
	Transfer	3.8%	7.7%	10.5%	26.7%	30.3%	13.8%	7.2%	0.0%	100%
	End-of-line	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	11.2%	88.8%	100%
Outside CBD	Subway	4.3%	8.2%	9.9%	25.2%	23.7%	6.8%	21.4%	0.4%	100%
	Transfer	1.2%	2.2%	2.2%	5.5%	16.9%	31.0%	38.8%	2.3%	100%
	End-of-line	0.1%	0.1%	0.2%	0.5%	2.1%	5.9%	41.1%	50.0%	100%

Bold figures in the Transit app data are greater than the equivalent cell in the TLC data, and vice-versa. Users of the Transit app were more likely to book an Uber **within 250 feet of a subway station** than the general (TLC) population of Uber users.

256
257 The TLC data has one small, but interesting advantage against the Transit app when
258 evaluating the proportion of trips for 0-250 feet from Transfer stations across the entire city
259 (2.7% of Transit app-Uber origins versus 3.2% of TLC-Uber origins). However, when this
260 proportion is broken into districts of inside and outside of the CBD, the Transit app has the
261 advantage in both categories. This advantage is due to the TLC data's being heavily concentrated
262 in the dense CBD where many transfer stations are located, resulting in a closer median distance
263 to transfer stations for the entire TLC data set. However, when sorting into Inside and Outside
264 the CBD for both data sets, the Transit app actually reveals a higher concentration around
265 transfer stations in both districts compared to the TLC data. The kernel density map in Figures 2
266 & 3 explains this paradox: it shows that in the CBD, the Transit app has a high concentration of
267 trips near major transfer hubs such as Penn Station, Grand Central Terminal, Fulton St and the
268 Port Authority Bus Terminal, while the TLC data is most concentrated in commercial and office
269 districts such Midtown East and nighttime entertainment districts like the Meat Packing District
270 and the Lower East Side. Thus a higher proportion of origins in the CBD leads to a closer
271 median value for the entire TLC data, but the Transit app data is actually more concentrated near
272 major transfer points inside and outside the CBD.
273

274 **DISCUSSION AND FUTURE RESEARCH**

275 By combining the wealth of transportation options made visible by mobility aggregators
276 such as the Transit app, with TNCs such as Uber, travelers have more tools to enable them to
277 execute trips that match their preferences for speed, convenience, and cost. The Transit app in
278 particular is geared towards smartphone users who would like to consider transit options first,
279 while also helping them find other modes of transport as a part of their journeys.

280 The results of this specific analysis provide early evidence of the idea that utilizing
281 interactive, dynamic and contextual transport information about many modes on a modern
282 smartphone can result in multi-modal trips. Our key finding is that Transit app users have a
283 higher incidence of Uber requests immediately next to a subway station than the general
284 population of Uber users. If the user did not hope to take transit, it is unlikely that they would
285 have opened the Transit app just to request an Uber when the Uber app would still have to be
286 used to complete the transaction. The Transit app's data suggests that for a Transit app user the
287 TNC acts as an accessible transit complement helping people if the user's public transit option
288 was not suitable or desirable for that particular trip. For some trips, the TNC may act as a
289 substitute for transit after viewing options on the Transit app. However, this behavior still
290 complements a general habit of using transit. The improved ease of accessing the different
291 options may sustain the use of public transit in general, thus still behaving as a complement to
292 the transit system overall.

293 The strength of the findings – both in its logic and in the data – is strongest for origins
294 closest to the transit stop, particularly outside of dense activity areas such as Manhattan's Central
295 Business District. Continued research involving the evidence presented here is proceeding with
296 statistical analysis to quantify the significance of these findings. As research into this relationship
297 progresses into the future, new data should also be made available to researchers and
298 transportation departments to understand how these services can impact public infrastructure and
299 policy needs. Future qualitative research should include travel surveys to verify how people use
300 mobility aggregators to complete specific trips that may involve more than one travel mode.

301 The phenomenon of shared mobility and real-time transport information is evolving
302 quickly due to the transformations wrought by the prevalence of TNCs and mobility aggregators
303 worldwide. Both services were barely available 5-years ago, but have grown to be quite
304 prevalent in urban environments. As these services continue to evolve new transportation
305 behaviors will evolve around them. This area of research should grow in significance as the use
306 of TNCs and mobility aggregators continue to revolutionize users' abilities to control their own
307 transportation outcomes.

308

309 **ACKNOWLEDGEMENTS**

310 The authors acknowledge the Transit application for sharing their data, and we are particularly
311 grateful to Jake Sion. This research was supported in part by a 2015 City University of New
312 York (CUNY) Collaborative Incentive Research Grant (CIRG) grant and a 2016 University
313 Transportation Research Center (UTRC) faculty-initiated grant.

314 **REFERENCES**

315

316 1. Line, T., Jain, J., & Lyons, G. (2011, November). The role of ICTs in everyday mobile lives.
317 *Journal of Transport Geography*, 19(6), 1490-1499.

318 2. Davidson, A. (2014). *The Role of Information Communication Technologies in Making*
319 *Transportation Decisions: An Exploratory Study*. New York Metropolitan Transportation
320 Council, September 11th Memorial Fellowship Program, New York.

321 3. Allenby, B. (2008). Complexity in urban systems: ICT and transportation. *IEEE International*
322 *Symposium on Electronics and the Environment*, 1-3.

323 4. Hans, G. (2004, March). Towards a Sociological Theory of the Mobile Phone. *Sociology in*
324 *Switzerland: Sociology of the Mobile Phone*(Release 3.0). Zurich, Switzerland. Retrieved
325 from http://socio.ch/mobile/t_geser1.htm

326 5. Aguilera, A., Guillot, C., & Rallet, A. (2012). Mobile ICTs and physical mobility: Review and
327 research agenda. *Transportation Research Part A*, 664-672.

328 6. Thrift, N., & French, S. (2002). The Automatic Production of Space. *Transactions of the*
329 *Institute of British Geographers*, 27(3), 309-335.

330 7. Jain, J. C. (2006). Bypassing and WAPing: Reconfiguring Timetables for Real Time Mobility.
331 In M. Sheller, & J. Urry, *Mobile Technologies of the City* (pp. 79-101). London:
332 Routledge.

333 8. Taylor, B. D. (Chair) (2016). *Between Public and Private Mobility: Examining the Rise of*
334 *Technology-Enabled Transportation Services*. Washington, DC: Transportation Research
335 Board. Retrieved from <http://onlinepubs.trb.org/onlinepubs/sr/sr319.pdf>

336 9. Benkler, Y. (2004, November). Sharing Nicely: On Shareable Goods and the Emergence of
337 Sharing as a Modality of Economic Production. *The Yale Law Journal*, 114(2), 273-358.

338 10. Bottsman, R., & Woo, R. (2010). *What's Mine is Yours: The Rise of Collaborative*
339 *Consumption*. New York: HarperCollins Publishers.

340 11. Bender, A. (2015, April 10). Uber's Astounding Rise: Overtaking Taxis In Key Markets.
341 *Forbes*. Retrieved from <http://www.forbes.com/sites/andrewbender/2015/04/10/ubers->
342 [astounding-rise-overtaking-taxis-in-key-markets/](http://www.forbes.com/sites/andrewbender/2015/04/10/ubers-)

343 12. Davidson, A., & Ames-Fischer, L. (2015). (Re)Producing Transport Systems: Uber,
344 Driverless Technology, and the Modern City. *TRB 94th Annual Meeting Compendium of*
345 *Papers* (p. 18p). Washington, DC: Transportation Research Board.

346 13. Brakewood, C., Barbeau, S., & Watkins, K. (2014). An experiment evaluating the impacts of
347 real-time transit information on bus riders in Tampa, Florida. *Transportation Research*
348 *Part A: Policy and Practice*, 69, pp. 409-422.

349 14. Ferris, B., Watkins, K., & Borning, A. (2010). OneBusAway: Results from Providing Real-
350 Time Arrival Information for Public Transit. *Proceedings of the SIGCHI Conference on*
351 *Human Factors in Computing Systems* (pp. 1807-1816). ACM.

352 15. Tang, L., & Thakuriah, P. (2012). Will the Psychological Effects of Real-time Transit
353 Information Systems Lead to Ridership Gain? *Transportation Research Record*, 2216,
354 67-74.

355 16. Bialik, C., Fischer-Baum, R., & Mehta, D. (2015, December 9). *Is Uber Making NYC Rush-*
356 *Hour Traffic Worse?* Retrieved July 2016, from FiveThirtyEight.com: Is Uber Making
357 NYC Rush-Hour Traffic Worse?

358 17. Fischer-Baum, R. (2015, October 13). *Uber Is Taking Millions Of Manhattan Rides Away*
359 *From Taxis.* Retrieved July 2016, from FiveThirtyEight.com:
360 [http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-](http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/)
361 [from-taxis/](http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/)

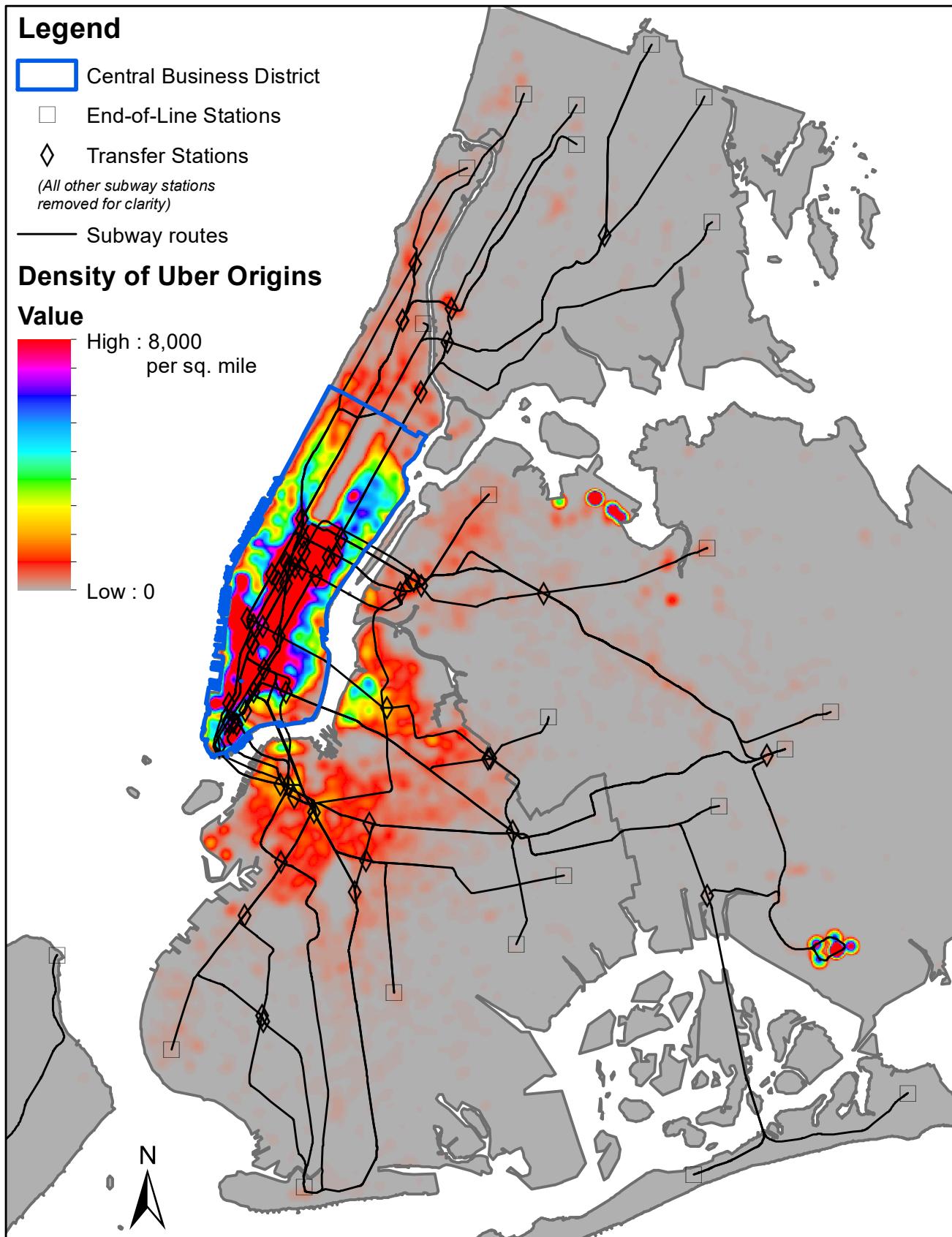
362 18. FiveThirtyEight.com. (2015, September 22). *uber-tlc-foil-response.* Retrieved July 2016,
363 from GitHub: <https://github.com/fivethirtyeight/uber-tlc-foil-response>

364 19. Transit app. (2015). 'uber-request' table.

365

Density of Uber Origins

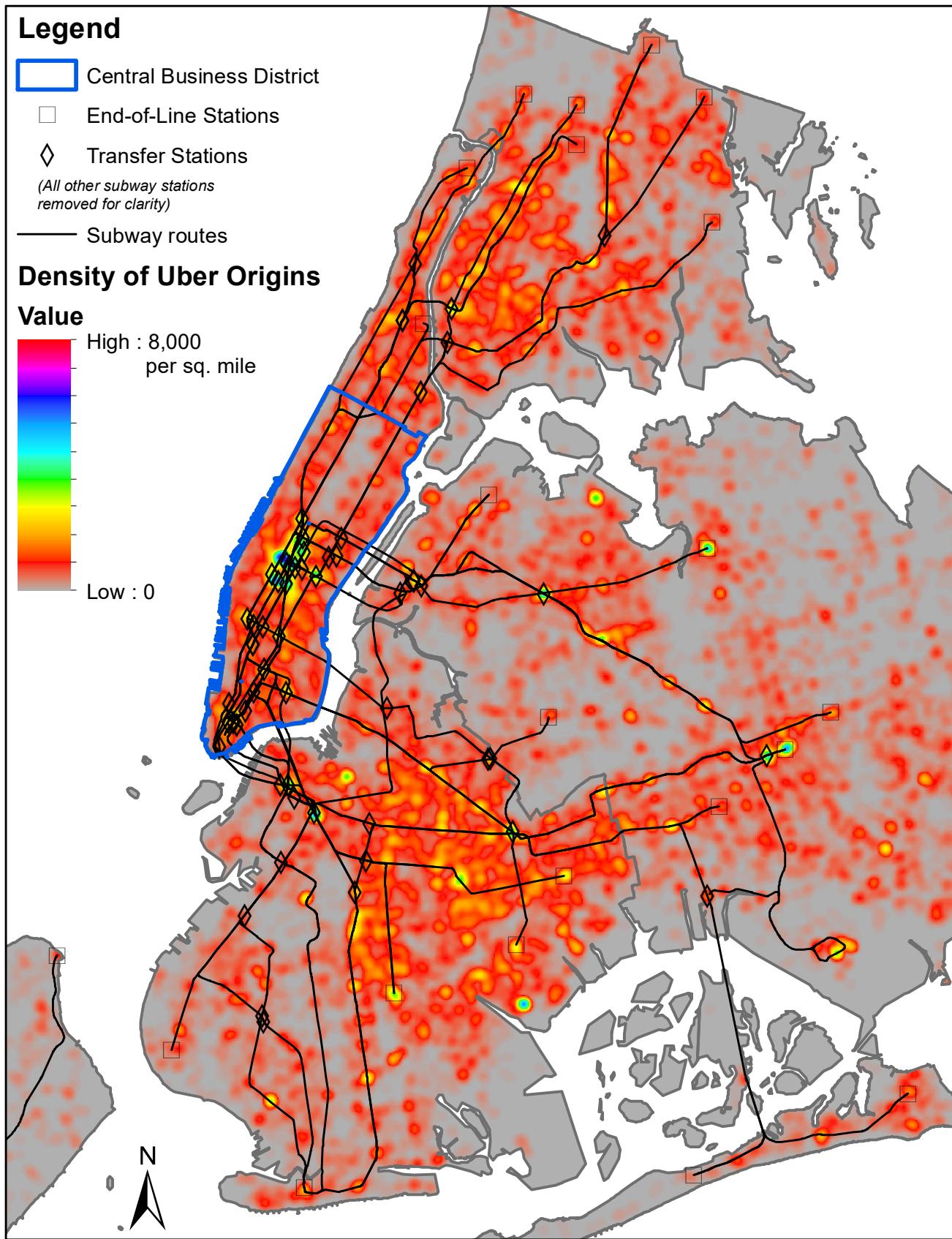
Figure 2. reported by the TLC for 2014



Source: New York City Taxi and Limousine Commission via FiveThirtyEight.com (2015)

Density of Uber Origins

Figure 3. from the Transit App for 2015



Source: The Transit App (2016)